Quest	ion	<u> </u>	Expected Answers	Further Guidance	Mk
	а		(Jupiter's) moons/satellites		1
		ii	The moons pass in front of/behind Jupiter as they orbit		1
	b		1 Sunspots	no credit for explanations	
			Heavenly 'imperfections'	without matching discoveries	
			2 Phases of Venus		2
			cannot be explained by geocentric model		2
			3 Mountains on Moon:	•	1
			Heavenly 'imperfections'		
			4 Milky way made up of stars		
			stars very distant (so very small parallax in heliocentric model)		1
	-	\vdash	Total		[6]
2	а	_	An atom may only absorb radiation at certain wavelengths		1
_	_		corresponding to transitions between energy levels in that atom	allow energy level diagram	1
		1	OR	showing upwards transition	1
			stars produce a continuum spectrum	.	
			absorption/re-radiation argument		1
	b		Identify elements from characteristic absorption wavelengths		1
			Obtain abundance from strength of absorption line		
			or other relevant detail	comparison with spectra	1
	⊢	-	Total		[4]
3	a	├	Δm = 1.000 - 0.993 = 0.007 kg	-1 for incorrect ∆m	1
3	ľ		$\Delta E = mc^2$		1
i i	1		$= 0.007 \times (3 \times 10^8)^2$	ecf	1
	l		= 6.3 x 10 4 kg·s' > .	Ifull marks for correct answer	1
	Ь		Rate of consumption = $3.9 \times 10^{26} \text{ J s}^{-1}/6.3 \times 10^{14} \text{ J kg}^{-1}$ (ecf)		1
	٦		= 6.2 x 10 ¹¹ kg s ⁻¹	full marks for correct answer	1
	٦	l.	$10\% \text{ of } 2 \times 10^{30} \text{ kg} = 2 \times 10^{29} \text{ kg}$	Tan Marke for contest and to	1
	C	ľ	MS lifetime = 2×10^{29} kg/6.2 x 10^{11} kg s ⁻¹	ecf	1
	l		$= 3.2 \times 10^{17} \text{ s} (= 1 \times 10^{10} \text{ y}) \text{ (unit penalty -1)}$	no marks for answer only	1
	l	l _{ii}	sun is 100% H at start of MS life/constant power output/temperature/other valid	•	1
	⊢	111	Total	I	[10]
4		╌	Correctly drawn- disc and central bulge		1
	l		Correctly drawn - spiral arms		1
	l		On spiral arm, more than half way out from centre		2
	├	├─	Total		[4]
E	a	 	points plotted correctly (-1 for each error/omission, min 0)	± 0.5 division	1 2
9	 		smooth curve through points		1
	Ь	ŀ	relative motion between source/observer		1
		l	doppler effect	allow redshift/receding or	
			Tabbio olient	blueshift/approaching (2 marks)	1
	c		$\mathbf{v} = (\Delta \lambda / \lambda) \mathbf{c}$		1
	۲		= ((393.7 - 393.4)/393.4) x 3x10 ⁸		1
			$= (2.3 \pm 0.1) \times 10^{8} \text{ m s}^{-1}$	full marks for correct answer	1
	d	۱.	Period measurement from graph = 70 ± 3 hours	Tun mano for comportanente.	1
	۱۳	ľ	T = 70 x 3600 = 2.52 x 10° s		1
		lii	$V = 2\pi r/T$		1
		["	$So r = vT/2\pi = 2.29 \times 10^{\circ} \times 2.52 \times 10^{\circ}/2\pi$		11
		ŀ	r = (9.2±0.4) x 10 ⁹ m (allow ecf) (unit penalty -1)		1
	┝	-	Total		[13]
e	а	-	1 far - ultraviolet, x-ray, γ-ray	must be named regions	1
"	"		2 radio, far infra red		1
	b		radio, or microwaves, infra-red, ultraviolet		1
	۳	 	Total		[3]
	L	L	- VWI	1	

Quest	ion		Expected Answers	Further Guidance	Mk
7	а	Γ	Corresponds to T ≈ 3 K	allow 2.7-3 K	1
- 1			Blackbody spectrum		1
		İ	Uniform/isotropic		1
			shows ripples	COBE result	
	b		Early universe very hot]
		ŀ	radiation has origin in BB		Ì
			matter and radiation in equilibrium	5 max	
		l	universe expands/cools	NB. Correct sequence	
			atoms form/matter and radiation decoupled/universe becomes transparent	1 of 3	5
		İ	radiation has stretched with the universe	allow doppler shifted/red shifted	
l	С	i	Homogeneous - the same everywhere, uniform	1 only if wrong way round	1
į			Isotropic - looks the same in every direction		1
		ii	CMB is highly uniform (so the universe must be uniform too)		1
			Total		[11]
8	а		situation diagram: 2 observers, clocks, relative motion, time interval defined	be flexible to give credit for alternative	е
ļ			interval measured	experiments.	1
			improper observer sees longer time because longer path		ł
l			speed of light is constant for both observers	1	İ
			or other detail	eg reciprocity of observations	1
			Muon decay expt: v. high speed muons (1) count rates compared on		Ì
			mountain/sea level (1), count rate higher than expected at sea level because		1
			lifetime is greater (1).	3 max - NOT a thought expt	4
	b		$t = \gamma t_0$		ļ
ļ		ŀ	$\gamma = [1 - v^2/c^2]^{-1/2} = 1.67$	allow $[1-v^2/c^2]^{1/2} = 0.6$	
}			t = 1.67 x 26 ns = <u>43.3 ns</u>	full marks for correct answer	1
		ii	$s = 0.8 \times 3 \times 10^8 \times 43.3 \times 10^{-8}$	ecf	1
			= <u>10.4 m</u>	full marks for correct answer	ļ
		iii	s = 0.8 x 3 x 10 ⁸ x 26 x 10 ⁻⁹	ĺ	
ļ			= <u>6.24 m</u>	full marks for correct answer	
			Total		[10]
9	а		gravity and acceleration	1 for grav = acc	2
			are equivalent/indistinguishable/ have same effects	correct link	1
	ь	i	in GR, gravity = spacetime curvature (produced by mass)	allow warped/curved space	1
i	-		light takes shortest path in curved spacetime	light follows curved path, allow	İ
			•	acceleration argument	1
- 1		jj	a massive object eg. a galaxy, bends the light coming from an object behind	allow strong grav. field	ļ
- 1			producing a ring shaped virtual image		2
j	Ì	iii	diagram showing:		
l			object galaxy + intermediate lensing object + observer	allow deflection of star image by Sun	1
			bending light rays		1
	- 1		location/dircetion of image shown		1
1	J			1	

- 10 (a) sensible feature and reason one mark for each up to a maximum of 4, e.g.(4)
 - Graph has low value over the first 6 h and ref. to low demand as most people are sleeping
 - Demand peaks at mid-day and ref. to (electricity consumed for) cooking
 - Demand peaks at 1800 / 1900 h and ref. to (consumption for) cooking
 - Peaks greater in January at tea time / 1700 h and ref. to heating and cooking at the end of work
 - Demand does not fall below a min. value and ref. to reason such as street lights
 / storage heaters
 - Similar shapes of graphs for January and August and suggestion that the pattern of the day is similar
 - Graph for January is higher than for August **and** ref. to more energy needed for heating
 - Graph has a steep slope in morning and ref. to industry switching on appliances (allow 'graph goes up in the morning as people go to work)
 - (b) look for reference to **time** in both marking points one mark for each up to a maximum of 2, e.g.**(2)**
 - it takes <u>time</u> for (added) coal to burn or / it takes time for coal to give out heat at the required rate
 - coal fires do not go out <u>straight away</u> or / it takes <u>time</u> to cool down allow alternative response here if a sensible comment is made about the problems / costs associated with allowing a power station to cool i.e. it is uneconomical to get going again
 - (c) (i) 66 +/- 2 GW Allow single unlabelled line on graph if it lies in the range (1) (ii) 74 graph value e.g. 66 = 8 GW allow 73.5 to 74 GW for peak value A bald answer of 8 GW with no graph value gets 1 mark (1)
 - (d)(i) $\Delta \text{ gpe} = \text{mg}\Delta h$ or words or numbers **clearly** arranged to show the change in gpe e.g. $\Delta \text{gpe} = \text{m x } 9.8 \times 100$

<u>power = energy converted / time taken</u> or numbers **clearly** arranged to show power

e.g. power = $1.0 \times 10^9 = m \times 9.8 \times 100 / 1$ (1) volume = mass / density or equivalent (1)

(1)

calculation e.g. volume (s⁻¹) = $1.02 \times 10^6 / 1.0 \times 10^3 = 1.02 \times 10^3 \text{ m}^3$ (s⁻¹) (1) (ii) $1.0 \times 10^3 = 35 \times 10^3 = 35 \times 10^3 = 1.02 \times 10^3 = 1.0$

total volume = $1.0 \times 10^3 \times 4 \times 60 \times 60$ (1) area = 28.6 m^2 (in one second) **(1) or** total volume = $1.44 \times 10^7 \text{ m}^3$ (1)

area = 28.6 m (in one second) (1) or total volume = 1.44 x 10 m (1) area for 4 h = 28.6 x 4 x 60 x 60 or $1.44 \times 10^7 = 35 \times 1^2$ (1) = 4.11 x 10^5 m² (1) (4.11 x 10^5)^{0.5} = 641 m (648m) (1) or (4.11 x 10^5)^{0.5} = 641 m (648m) (1)

(iii) Two comments relevant to the feasibility **ecf (ii)** one mark for each to a maximum of 2 e.g. **(2)**

- ref. to physical dimensions / very large area needed
- drop of 100 m may be a problem with regard to geographical siting
- 7 more lakes needed to meet the demand ecf (c)
- argument for this type of pumped storage facility may gain credit if rapid response to change in demand is mentioned
- use of peak power at night to store energy as gpe
- sensible comment on a stated effect on the environment e.g. destroys habitat / affects ecology do not allow any reference to costs or noise

- (iv) look for energy conversions for both marks one mark each to max. 2 e.g. (2)
 - turbine is inefficient as some of the ke of water is converted into heat
 - conversion to heat energy is due to friction in turbine / friction in generator / friction in pipes
 - some ke retained by water after passing through turbine / not all ke given to turbine