

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

PHYSICS A

2825/01

Cosmology

Thursday

27 JUNE 2002

Morning

1 hour 30 minutes

Candidates answer on the question paper.
Additional materials:
Electronic calculator

Candidate Name	Candidate Centre Number Number

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE			
Qu.	Max.	Mark	
1	6		
2	4		
3	10		
4	4		
5	13		
6	3		
7	11	·	
8	10		
9	9		
10	20		
TOTAL	90		

 $g = 9.81 \text{ m s}^{-2}$

Data

acceleration of free fall,

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{Js}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \mathrm{kg}$
molar gas constant,	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Formulae

uniformly accelerated motion,
$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

refractive index,
$$n = \frac{1}{\sin C}$$

capacitors in series,
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

capacitors in parallel,
$$C = C_1 + C_2 + \dots$$

capacitor discharge,
$$x = x_0 e^{-t/CR}$$

pressure of an ideal gas,
$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,
$$x = x_0 e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

critical density of matter in the Universe,
$$\rho_0 = \frac{3H_0^{\ 2}}{8\pi G}$$

relativity factor,
$$= \sqrt{(1 - \frac{v^2}{c^2})}$$

current,
$$I = nAve$$

nuclear radius,
$$r = r_0 A^{1/3}$$

sound intensity level, =
$$10 \lg \left(\frac{I}{I_0}\right)$$

Answer all the questions.

- 1 Galileo is credited with the first application of the telescope to astronomy.
 - (a) On January 7 1610, Galileo observed the planet Jupiter and saw tiny spots of light either side of it. On subsequent days the pattern of spots changed, as shown in Fig. 1.1.

°°°	©°°°°	(cloudy)
January 7,1610	January 8,1610	January 9,1610
₀ ©	。 ◎	°°°
January 10,1610	January 11,1610	January 12,1610
°°°	(cloudy)	©°°°°
January 13,1610	January 14,1610	January 15,1610

= Jupiter

Fig. 1.1

(i)	Explain the existence of the spots of light near Jupiter.	
(ii)	Explain why there are two spots in some sketches and three or four in others.	
		[2]

	(b)	State two other astronomical discoveries made by Galileo. For each one explain how the observation conflicts with previous models of the Universe.		
		1		
		2		
		[4]		
		[Total: 6]		
2	(a)	Spectroscopic analysis of starlight reveals the presence of dark lines in the spectrum. Explain how these absorption lines occur.		
		[2]		
	(b)	Outline how the composition of stellar atmospheres may be obtained from stellar spectra.		
		[2]		
		[Total: 4]		

3

The Sun produces its energy mainly by a series of nuclear fusion reactions in which hydrogen is converted to helium. For each 1.000 kg of hydrogen consumed in the fusion reactions, the rest mass of the products is only 0.993 kg. This change in mass is associated with the production of energy.				
(a)	Cal	culate the energy produced from 1.000 kg of hydrogen.		
		energy = J [4]		
(b)		Sun's power output is 3.9 x 10^{26} W. Calculate the rate at which the Sun is using up hydrogen.		
		•		
		rate of consumption of hydrogen =kg s ⁻¹ [2]		
(c)	The whe	mass of the Sun is 2.0 x 10 ³⁰ kg and it is expected to leave the Main Sequence an approximately 10% of its hydrogen has been used up.		
·	(i)	Estimate the Main Sequence lifetime of the Sun. Give a suitable unit for your answer.		
		lifetime =		
	(ii)	State one assumption you have made in carrying out this calculation.		
		[4]		
		[Total : 10]		

4 The Sun is one of many stars within our Galaxy.

Sketch a plan view and a side view of our Galaxy. Label important features and indicate the approximate position of the Sun.

Plan view

Side view

[4]

[Total : 4]

In a binary star system, two stars orbit each other, held together by their mutual gravitational attraction. A line in the spectrum of calcium has wavelength 393.40 nm when measured from a source at rest in the laboratory.

The wavelength of the same line from one of the stars of a binary star system was measured over a period of time and the results are recorded in Fig. 5.1.

wavelength/nm
393.40
393.63
393.69
393.53
393.27
393.11
393.17
393.40
393.63
393.69
393.53

Fig. 5.1

On Fig. 5.2 plot a graph of wavelength against time.	[3]
Suggest why the wavelength varies.	
	.[2]
Calculate the orbital speed of the star.	- []
	Suggest why the wavelength varies.

speed = $m s^{-1}$ [3]

(d) (i) Use your graph to show that the orbital period of the star is $2.5 \times 10^5 s$.

[2]

(ii) Calculate the radius of the orbit, assuming that it is circular. Give a suitable unit for your answer.

radius =

[3]

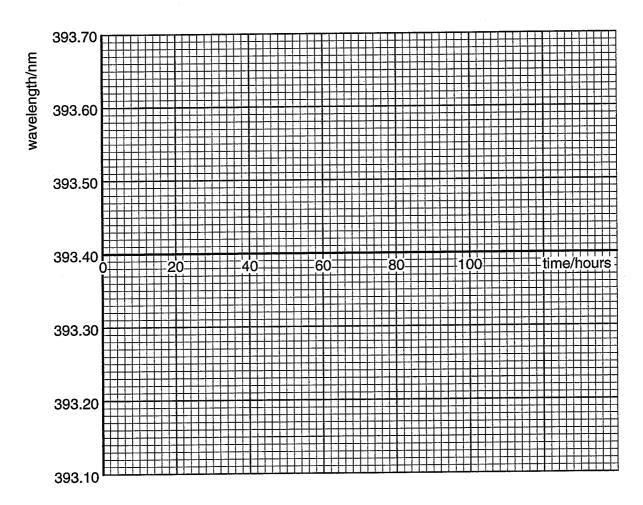


Fig. 5.2

[Total: 13]

6 Fig. 6.1 shows how the transparency of the Earth's atmosphere to electromagnetic radiation of different wavelengths varies with the altitude above sea level. The top of the shaded region shows the altitude above which the atmosphere is transparent.

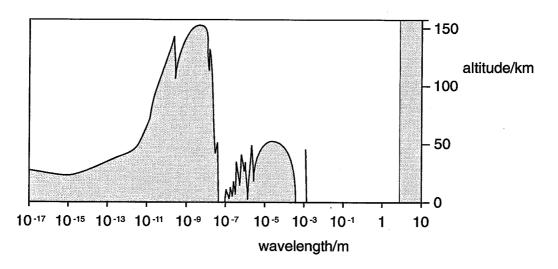


Fig. 6.1

(a)	Name two regions of the electromagnetic spectrum which <i>cannot</i> be observed from the Earth's surface.
	1
	2
	[2]
(b)	Name a region of the electromagnetic spectrum other than visible light to which the Earth's atmosphere is transparent.
	[1]
	[Total : 3]

(a)	State three properties of the cosmic microwave background radiation.		
	1		
	2		
	3	[3]	
(b)		how the microwave background radiation is thought to have arisen in standard goosmology.	
	••••••		
		[5]	
, (c)	The Cos	smological Principle states that 'on a sufficiently large scale, the Universe is neous and isotropic'.	
.5	(i)	Explain the meaning of the terms homogeneous and isotropic.	
		homogeneous	
		isotropic	
		[2]	
	(ii)	State how the microwave background radiation supports the Cosmological Principle.	
		[1]	
		[Total : 11]	

(a) Describe, with the aid of a diagram, a thought experiment to illustrate time dilation.

8

•••••	•••••••••••••••••••••••••••••••••••••••		

	••••••	••••••••••••	
			[4]

		13	E
(b)	Pions are subatomic particles produced in high-energy collisions between particles and nuclei, for example when a cosmic ray collides with a nucleus in the atmosphere. Pions have a mean lifetime of 26 ns when at rest. If they have a speed of 0.80 c relative to the laboratory, calculate		
	(i)	the mean lifetime of the high-speed pions as measured by stationary observers in the laboratory,	The state of the s
		lifetime = ns [3]	ļ
	(ii)	the mean distance travelled by the high-speed pions according to stationary observers in the laboratory,	
		distance = m [2]	
	(iii)	the mean distance travelled by the pions in the laboratory if their lifetime did not depend on their velocity.	
		distance = m [1]	

[Total : 10]

9

(a) \	What is the equivalence principle?		
'			
•	[2]		
(b) F	Fig. 9.1 is an image showing <i>gravitational lensing</i> caused by the galaxy Abell 2218 aken by the Hubble space telescope.		

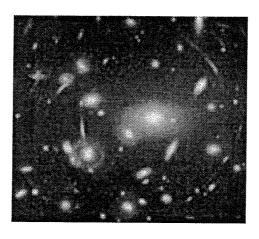


Fig. 9.1

(1)	Photons have zero rest mass. With reference to General Relativity, explain how the path taken by light can be affected by gravitational fields.
	[2]
(ii)	Suggest what is meant by the term gravitational lens.
	[2]

(iii) Sketch a labelled diagram to show gravitational lensing.

[3]

[Total : 9]

10 The following passage is based on a scientific article.

Power stations are normally most efficient when running under full load. The variation in demand over a day means that there must be capacity to meet peak demand, but much of this will be out of use for most of the day. This is wasteful of capital equipment when it is standing idle and of the fuel needed to run the station up to full demand and down at times of minimum demand.

The demand shown for January in Fig. 10.1 below is met for most of the day by power stations which are called *base load* stations. It has been suggested that during periods of peak demand, hydroelectric stations may be used to top-up the supply. The water for the hydroelectric stations is pumped into reservoirs at times when the *base load* stations' output is greater than demand. This is called a 'pumped storage' system.

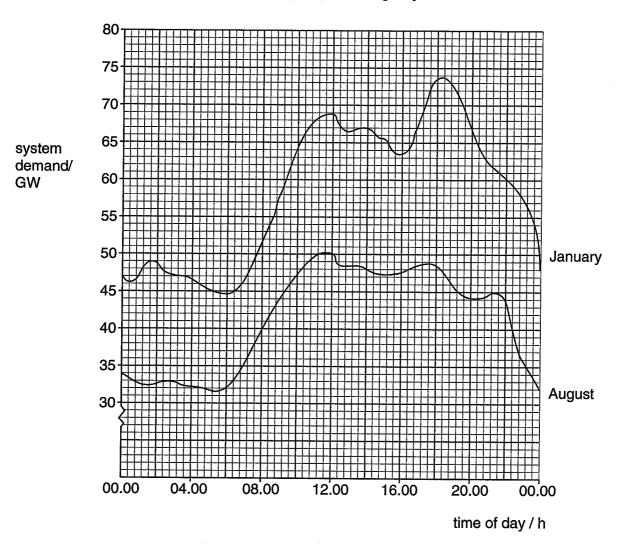


Fig. 10.1

Fig. 10.1 shows the average variation in electricity demand from the electricity companies in the UK with time of day for January and August.

Answer the following questions about this passage.

(a)	State four major features of the graphs of Fig. 10.1 for January and August and suggest reasons for these features.	
	1	
	2	
	3	
	4	
		[4]
(b)	the standard fined names station cannot simply be	

		[2]
(c)	(i)	Use Fig. 10.1 to estimate the <i>base load</i> power for January, that would allow the system to meet the demand for 18 hours out of a 24 hour period. Show this as a horizontal line labelled BL on Fig. 10.1.
	(ii)	Estimate the maximum power output of the hydroelectric power stations needed to meet the extra demand.
		power = GW [2]

		10
(d)	Water in one of the hydroelectric power stations falls through a vertical distance 100 m.	
	(i)	Show that the minimum volume of water required per second to flow through the turbines to produce an output of 1.0 GW from the generator is about 1 x 10^3 m ³ . (The density of water = 1000 kg m ⁻³).
		[4]
((ii)	Calculate the length of one side of a square reservoir of depth 35 m which would just supply water at a rate of $1.0 \times 10^3 \text{m}^3 \text{s}^{-1}$ for a continuous period of 4 hours.
:		
		·
		length = m [4]
(i	ii)	Comment on the feasibility of a number of such power stations to meet the extra requirements during periods of peak demand.
		[2]
(i	v)	Give two reasons why the actual volume of water required per second to produce an output of 1.0 GW is greater than that calculated in (d)(i) .
		[2]
		[Total : 20]
		[.5ta. 26]

2825/01 S02

BLANK PAGE