Downloaded from http://www.thepaperbank.co.uk

RECOGNISING ACHIEVEMENT

Mark Scheme 2825/03 June 2002

1.	(a)	(i)	Digram showing: Any movement of upper layers to the right relative to lower layers, but not amounting to slip; Same relative movement of top three layers relative to one below, but no slip.		[2]
		(ii)	Diagram showing: Relative movement of horizontal planes as in (i); Slip between any two adjacent horizontal layers; (If slip shown between top two layers and bottom two layers, 2 max)	(1) (1) (1)	[3]
	(b)	(i)		(1) (1)	[2]
		(ii)	elastic limit / B shows plastic deformation; B contains dislocations / defects (A does not) / B contains more dislo	(1) ocations (1)	[2]
2.	(a) ·			(1) (1)	[2]
	(b)		Correct substitution;	(1) (1) (1)	[3]
	(c)	-	B = V_H/vd = 1.5 x 10 ⁻⁸ / (4.3 x 10 ⁻⁵ x 0.02) (e.c.f.)	(1) (1) (1)	[3]
	(d)			(1) (1)	[2]
3.	(a)		Having a north and south pole / like a bar magnet / magnetism arising electron spin (movement)	g from	[1]
	(b)	(i)		(1). (1)	[2]
		(ii)	Dipoles lose alignment / become randomly orientated		[1]
	(c)	(i)		(1) (1)	[2]
. •		(ii)	When B ₁ is reduced to zero, B ₂ remains large; OR The material has high remanence (1) with further explanation (1); (1 max for statements such as: The material is hard to demagnetise / magnetically hard / requires high energy for demagnetisation).	(1)	[2]

Downloaded from http://www.thepaperbank.co.uk 2825/03 Mark Scheme

28	25/0	3	Mark Scheme	Ju	ne 2002
		(iii)	Hysteresis loop encloses a large area; Core generates too much heat (so transformer would be inefficien Material has high coercivity. Magnetism of the material is not easy to reverse;	(1)	Max [2]
4.	(a)	(i)	Circuit complete a.c. supply, transformer, meters and load. (-1 if: one or two meters omitted or misplaced / supply is d.c. / loa omitted).	d	
٠		<u>(</u> ii)	Read meters; Calculate powers using P = IV; Efficiency expression.	(1) (1) (1)	[3]
	(b)	(i)	Heat generated (in the core) by eddy currents / Heat generated in core by hysteresis effects / Heating of the coils by the current. (No mark if heat not mentioned).	the	[1]
		(ii)	Faraday's law: Induced e.m.f. / voltage proportional to / equal to reflux change.	ate of	[1]
		(iii)	Efficiency decreases as frequency increases;	(1)	
			Rate of change of flux increases with frequency; Higher (induced) current in core produces more heat. OR	(1) (1)	
			Higher frequency means more circulations of hysteresis loop; and greater generation of heat / hysteresis losses.	(1) (1)	max [3]
	• 5	(iv)	Material is magnetically soft / has hysteresis loop of small area / has high sensitivity / is easy to magnetise and demagnetise.		[1]
5.	(a)	(i)	The temperature at which the resistance of a substance reduces t (No mark if no suggestion of threshold).	o zero.	[1]
		(ii)	4.2 K marked on temperature axis; Resistance falling – straight line or curve – from 10 K to 4.2 K; Sudden descent to zero resistance at 4.2 K.	(1) (1) (1)	[3]
	(b)	(i)	Super conductor is used to make the coil of an electromagnet; and cooled to below the transition temperature / cooled with liquid helium.	(1) (1)	[2]
					رحا
			Material has very low resistance / can carry very high current; Very strong magnetic fields can be produced; Minimal generation of heat; Electromagnet much smaller than the conventional type;	(1) (1) (1) (1)	
			Electromagnet cheap to run because of low power generation	(1)	max [2]
		(iii)	Difficult to produce / maintain the required low temperature /		

[1]

Possibility of switching to normal state.

2825/03 Downloaded from http. Aftwortherteepaperbank.co.uk June 2002

6.	(a)	(i)	E = hf / E = hc/ λ (1) = 6.6 x 10 ⁻³⁴ x 3.0 x 10 ⁸ / 1.3 x 10 ⁻⁶ = 1.5 x 10 ⁻¹⁹ J (1)						[2]
		(ii)	Energy gap between valence band and conduction band; (1) is greater than the energy provided by one photon. (1)						[2]
		(iii)	Infra-red has longer wavelength than visible light; (1) so Rayleigh scattering is less than with infra-red. (1)						[2]
	(b)		Award 1 mark for each sensible remark: e.g.						
			Bandwith / range of wavelengths of laser light is smaller; Laser produces a beam of greater power / intensity; Laser beam has better directional properties / produces narrower beam; Laser is capable of faster switching.						
7.	(a)		V/V	//mA	<i>PI</i> mW	<i>I</i> _L /μA	lg (P/mW)	$lg(I_L/\mu A)$	
			3.0	101	303	350	2.48	2.54	
			4.0	120	480	1050	2.68	3.02	
			5.0	141	705	2560	2.85	3.41	
			6.0	149	894	4680	2.95	3.67	
			7.0	165	1155	8420	3.06	3.93	
			-1 for 2	errors;	-2 for 3 errors	s; -3 fo	r 4 or more er	TOIS.	[3]
	(b)		All points correctly plotted (-1 for 1 error); (2) Best straight line drawn. (1)						[3]
	(c)		The (log/log) graph is a straight line.						[1]

Triangle, using at least 2/3 length of line, used for calculation of

(1)

(1) (1) (1)

[4]

(d)

Realisation that n is gradient;

 Δy and Δx values correctly read;

Correct value of n (2.4 with tolerance of 0.1).

gradient;

2825/03 Mark Scheme June 2002

- 8. (a) sensible feature and reason one mark for each up to a maximum of 4, e.g.(4)
 - Graph has low value over the first 6 h and ref. to low demand as most people are sleeping
 - Demand peaks at mid-day and ref. to (electricity consumed for) cooking
 - Demand peaks at 1800 / 1900 h and ref. to (consumption for) cooking
 - Peaks greater in January at tea time / 1700 h and ref. to heating and cooking at the end of work
 - Demand does not fall below a min. value and ref. to reason such as street lights
 / storage heaters
 - Similar shapes of graphs for January and August and suggestion that the pattern of the day is similar
 - Graph for January is higher than for August and ref. to more energy needed for heating
 - Graph has a steep slope in morning and ref. to industry switching on appliances (allow 'graph goes up in the morning as people go to work)
 - (b) look for reference to **time** in both marking points one mark for each up to a maximum of 2, e.g.(2)
 - it takes time for (added) coal to burn or / it takes time for coal to give out heat at the required rate
 - coal fires do not go out <u>straight away</u> or / it takes <u>time</u> to cool down allow alternative response here if a sensible comment is made about the problems / costs associated with allowing a power station to cool i.e. it is uneconomical to get going again
 - (c) (i) 66 +/- 2 GW Allow single unlabelled line on graph if it lies in the range (1)
 - (ii) 74 graph value e.g. 66 = 8 GW allow 73.5 to 74 GW for peak value (1)

 A bald answer of 8 GW with no graph value gets 1 mark
 - (d)(i) $\Delta gpe = mg\Delta h$ or words or numbers **clearly** arranged to show the change in gpe

e.g. \triangle gpe = m x 9.8 x 100 power = energy converted / time taken or numbers clearly arranged to show

e.g. power = $1.0 \times 10^9 = m \times 9.8 \times 100 / 1$ (1)

volume = mass / density or equivalent (1) calculation e.g. volume (s^{-1}) = 1.02 x 10⁶ / 1.0 x 10³ = 1.02 x 10³ m³ (s^{-1}) (1)

(ii) $1.0 \times 10^3 = 35 \times \text{area of reservoir}$ (1) or Vol/s x time = total volume

total volume = $1.0 \times 10^3 \times 4 \times 60 \times 60$ (1)

area = 28.6 m^2 (in one second) (1) or total volume = $1.44 \times 10^7 \text{ m}^3$ (1) area for $4 \text{ h} = 28.6 \times 4 \times 60 \times 60$ or $1.44 \times 10^7 = 35 \times 1^2$ (1)

 $= 4.11 \times 10^5 \,\mathrm{m}^2 \tag{1}$

 $(4.11 \times 10^5)^{0.5} = 641 \text{ m} (648\text{m})$ (1) or $(4.11 \times 10^5)^{0.5} = 641 \text{ m} (648\text{m})$ (1)

- (iii) Two comments relevant to the feasibility ecf (ii) one mark for each to a maximum of 2 e.g. (2)
 - ref. to physical dimensions / very large area needed
 - drop of 100 m may be a problem with regard to geographical siting
 - 7 more lakes needed to meet the demand ecf (c)
 - argument for this type of pumped storage facility may gain credit if rapid response to change in demand is mentioned
 - use of peak power at night to store energy as gpe
 - sensible comment on a stated effect on the environment e.g. destroys habitat / affects ecology do not allow any reference to costs or noise

2825/03 Downloaded from http://sww.thepaperbank.co.ukJune 2002

- (iv) look for energy conversions for both marks one mark each to max. 2 e.g. (2)
 - turbine is inefficient as some of the ke of water is converted into heat
 - conversion to heat energy is due to friction in turbine / friction in generator / friction in pipes
 - some ke retained by water after passing through turbine / not all ke given to turbine