TOTAL [6]

1.	(a)(i)	speed	d is dista	ance per unit time	/ distance / time	B1
	(ii)	veloci	ity is the	e displacement per	unit time / displacement / time	B1
	(iii)	veloci	ity has a	calar, velocity is a va direction nagnitude, velocity	vector had magnitude and direction scores 2)	B1 B1
	(b)(i)	1 s		= (40 x π) / (105 x = 0.60 (m s ⁻¹) allov		C1 A1
		2 v		= 40 / 105 = 0.38 (m s ⁻¹)		C1 A1
	(ii)	1 0	.60 (m :	s ⁻¹)	allow ecf ((b)(i))	A1
		2 0 s		comment for 2 e.g.	. there is no displacement	A1 B1
	(c) _,		ent mag ent direc			B1 B1
		the av	erage v		e diameter / upwards ngent to the circle / to the left	B1 B1
		instan	itaneou	s velocity equals a city is less as displ	•	B1 B1
						MAX 3
					Т	OTAL [14]
2.	(a)(i)	suitab veloci directi if scal	le scale ty 256 (ion 21° e diagra	e / correct working (kmh ⁻¹) / 71.1 m s ⁻¹ (west of north) (20 am used:		B1 B1 A1 A1
					or	
	(ii)		0 (km) 5 (km)			A1 A1

TOTAL [8]

TOTAL [7]

5.	(a)(i)	horizontal distance = (4.0 x 20) = 80 (m)		A1
		- 60 (III)		Λ1
	(ii)	vertical fall: $s = ut + \frac{1}{2} at^2$ = $0 + 0.5 \times 9.8 (4.0)^2$		C1 C1
		= 78 (m)		A1
	(iii)	horizontal component = 20 (m s ⁻¹)		A 1
	(iv)	vertical component: v = u + at		
		$= 0 + 9.8 \times 4$ = 39 (m s ¹)		C1 A1
	(b)(i)	friction/air resistance		
		weight / force due to gravity	any 2	B2
	(ii)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		B1
		converted to kinetic energy and thermal energy / heat / work done against friction		B1 B1
		two methods and two explanations or four methods		
		e.g. increase speed down runway		
		larger surface area of skis point skis upwards		
		lie as flat as possible / streamlining		B 4
			TOTAL	[16]
6.	(a)(i)	force x perpendicular distance from the force to the pivot / point force x distance from pivot / point scores one		B2
	(ii)	(one) force x (perpendicular) distance between the forces		B1
	(b)(i)	couple = 25 x 0.3 = 7.5		B1
		unit: Nm (consistent with working)		В1
(ii)		(resultant force is zero) resultant turning effect is not zero / there is a		
	(")	clockwise movement		B1
		not in equilibrium		B1

7.	(a)	stress/ strain	· M1
		with qualification e.g. elastic limit, within limit of proportionality tensile stress, tensile strain, Hooke's law obeyed	A1
	(b)(i)	$e/I = 0.55 \times 10^{-3} / 1.8$ = 3.1 x 10 ⁻⁴ (3.056)	C1
	(ii)	E = F x I / A x e F = $2 \times 10^{11} \times 3.1 \times 10^{-4} \times 1.2 \times 10^{-7}$ F = 7.33 (N)	C1 A1
	(c)(i)	E is half therefore e will be twice e = 1.1 (mm) (or suitable calculation)	C1 A1
	(ii)	limit of proportionality not exceeded / elastic limit is not exceeded / temperature of wires the same / Hooke's law applies	B1
8.	(a)(i)	thinking distance = $25 \times 0.65 = 16(.25)$ stopping distance = $40 + 16.25 = 56(.25)$ (m)	C1 A1
	(ii)	Ke = $\frac{1}{2}$ x 800 (25) ² = 250 x 10 ³ (J)	C1 A1
	(iii)	work done (by braking force) = loss in Ke / $(25)^2 = 0 + 2a \times 40$ F x 40 = 250000 / a = 7.81 F = 6250 (N)	C1 C1 A1
	(b)(i)	less friction force hence less deceleration / greater stopping distance	B1 B1
	(ii)	reduced tread gives less friction due to water layer OR tread required to remove layer of water consistent effect on stopping distance or acceleration	M1 A1
	(iii)	gravitational potential energy converts to Ke total Ke is greater (for same braking force) distance will increase	B1 B1 B1
		OR terms of forces: Force acts down slope / component of weight acts down slope less opposing force / resultant force / less deceleration distance increases	B1 B1 B1
			TOTAL [14]
			OWC A

TOTAL [90]