1.	(a) (b)	retrograde motion (arises naturally) without epicycles OR by planets overtaking each other. Ptolemaic model v.successful	1 1
		Lack of accurate data Copernican model gave less accurate results than epicycles or any other sensible comment (eg lack of observed stellar parallax)	1 1
			4
2.	(a) (b)	$F=Gm_1m_2/r^2$ with terms identified (or in words) $Gm_vM/r^2=m_vv^2/r$	1 1
		$v^2 = GM/r$ $v = 2\pi r/T$	1
		$(2\pi/T)^2$ = GM/r and rearrange	1
	(c)	$0.62y = 0.62x365x24x60x60 = 1.96x10^{7} s$	1
		$r = \sqrt[3]{\frac{6.67 \times 10^{-11} \times 2 \times 10^{30} \times (1.96 \times 10^7)^2}{4\pi^2}}$	1
		$= 1.09 \times 10^{11} \text{ m}$	1
			8
3.	(a)(i)	correct MS position relative to (ii)	1
	(ii) (iii)	correct MS position relative to (i) correct position above MS	1 1
	(iv) (b)	correct position below MS any two differences + explanation eg	1
	(6)	MS lifetime	
		Planetary nebula/Supernova White dwarf/neutron star or black hole	4
			8
4.	(a)(i)	measure of brightness as seen from Earth (allow measure of intensity)	1
	(ii) (b)(i) (ii)	measure of brightness as seen from 10 pc (allow measure of intensity) $I = k/r^2$, or in words (allow $I = 1/r^2$) $0.4-2.7 = 5 lg (r/10) /$	1
	(11)	<i>lg r/10 =-0.46</i>	1
		r = 3.47 parsec	1 1
			6
5.	(a)	$v = H_{o}r$, with terms identified	1
	(b)(i)	use of Doppler equation	1 1
	(ii)	correctly plotted: (-1 each error or omission, max 2) line of best fit through the origin	2 1
	(iii)	H _o = gradient of graph	1
		$= 48 - 54 \text{ km s}^{-1} \text{ Mpc}^{-1}$	1
			8

6.	(a)	collapse under gravity GPE → KE: temperature rises Temperature rises	
		fusion reactions start	3
	(b)(i)	primordial He – formed in big bang	1
	(ii)	first stars would have contained virtually no elements heavier than He OR solar He abundance > primordial	1
			5
7.	(a)	Any two from: Newtonian gravity spherical universe, uniform density	2
	(b)	$\rho_0 = 3 \times (1.6 \times 10^{-18})^2 / 8 \pi \times 6.67 \times 10^{-11}$	1
		$= 4.58 \times 10^{-27} \text{ (kg m}^{-3}\text{)}$	1
		$\rho_0 = 4.58 \times 10^{27} / 1.7 \times 10^{27}$ = 2.7 H atoms m ⁻³	1
	(-)		1
	(c)	open: ρ<ρ₀, will continue to expand forever, graph	2 2 2
		flat: ρ=ρ₀, will just continue to expand forever, graph	2
		closed: $\rho > \rho_0$, will expand and then contract back to a big crunch, graph	2
			12
8.	(a)(i)	unaccelerated.	1
	` (ii)	The speed of light is constant for all inertial observers	1
	(b)	A valid thought experiment described eg:	
		set up: eg train/tunnel/lamps	1
		observer A at rest rel. to train sees front lamp come on 1 st	1
		observer B at rest rel. to tunnel sees lamps come on together	1
	(a) (i)	so train longer than tunnel according to A $t = s/v = 4.2/0.98$	1
	(c)(i)	t = 5/V = 4.2/0.96 = 4.29 y	•
	(ii)	$I=I_0/\gamma$	1
	()	$\gamma = 1/\sqrt{1 - v^2/c^2} = 5.02$	1
		I = 4.2/5.02 = 0.84 ly	1
	(iii)	t = I/v = 0.84/0.98	1
		= 0.85 y	1
			13
۵	(a)	gravitational fields from other planets	1
٥.	(a)	+ detail eg proximity of large masses, change in speed etc.	1
	(b)(i)	major axis rotates	1
	`	about focus	1
		Perihelion shift defined ie as angle shown on diagram	1
	(ii)	GR predicted Mercury perihelion shift which agreed exactly with observation	1
			6
			70

(1) (1) (1) (1) (1)
(1) (1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1)
(1) (1)
(1)
nax
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1