Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2826/01

January 2002

2826/01

Mark Scheme

January 2002

Downloaded from http://www.thepaperbank.co.uk 2826/01 Mark Scheme January 2002

(b)(i)	object starts with gràvitational p.e.	1		
	converted into k.e. (as it falls)	1		
	maximum k.e. as it hits ground	1		
	on stopping converted into elastic p.e. (for an instant)	1		
	becomes internal energy / heat of fragments (and floor)	1		
	and sound	1	4	
	6 marking points; only 4 required			
(ii)	momentum of falling object (increases as it falls)	1		
	total momentum starts at zero	1		
	momentum finishes at zero	1		
	Earth gains momentum up as body falls	1		
	Earth's velocity is very small (due to its large mass)	1	4	8
	5 marking points; only 4 required			
(c)	ball is elastic but cup is brittle	1		
	distortion of cup is small	1		
	so acceleration of cup is very large	1		
	requiring a large force	1		
	distance of distortion for ball is much greater	1	4	4
	OR in terms of $F\delta t$ or $F\delta x$			
	5 marking points; only 4 required			

Downloaded from http://www.thepaperbank.co.uk Mark Scheme 2826/01 January 2002 2(a) a transformer 1 1 the turns ratio 1 (b) 9/230 OR 0.039 OR 1:25 OR 1:26 1 2 If a factor of 1.41 appears, 1:36 allow full credit marking points allowed - 3 required for full marks 3 3 (c) diode in connection from secondary to battery diode connected the correct way round light bulb connected in possible circuit light bulb connected across transformer secondary – (it will then go out when the transformer is not in use)

1

1 2

8

secondary coil is removed from (alternating) field of primary

so no induced e.m.f. (diode prevents bulb lighting from the battery)

(d)

Downloaded from http://www.thepaperbank.co.uk

2826/01 Mark Scheme January 2002

3(a)	Q charge on capacitor (at time t)	Q ₀ initial charge (on capacitor)	1		
O(a)			•		
	C capacitance	R resistance	1		
	N number of undecayed atoms	N ₀ initial number of undecayed atoms	1		
	(at time t)				
	λ decay constant	t time	1	4	
(b)(i)	unit of C = coulomb per volt = ampere s	econd per volt OR as A s V ⁻¹	1		
	unit of R = volt per ampere OR as V A	-1	1		
	deduction required		1		•
	e.g. unit of $CR = A s V^1 \times V A^{-1} = s$ the	nerefore since t has the unit s			
	t/CR has no unit				
(ii)	s ⁻¹		1	4	
(c) (i)	$\frac{Q}{Q_0} = e^{-\frac{5CR}{CR}}$		1		
	Q_0 = $e^{-5} = 0.0067 (4)$		1		
(ii)	$\frac{\frac{1}{2}Q}{100 \times 10^{-6} \times 200 \times 10^{3}} = e^{-\frac{t}{100 \times 10^{-6} \times 200 \times 10^{3}}}$		1		
	$\overline{Q_0}_0 = e^{-\lambda \delta A \delta $				
	$\frac{1}{2} = e^{-\frac{t}{20}}$		1		•
	$\ln 0.5 = -\frac{t}{20} = -0.693$				
	t = 13.86 = 13.9s		1	5	
(d) (i)	time constant = $1/\lambda$		1		
(ii)	$\lambda t_{1/2} = 0.693$		1		
	time constant = $1/\lambda$ = 850/0.693 = 1236	O s	1		
(iii)	same as for capacitors, namely 0.0067	(4)	1	4	17

2826/01 Downloaded from http://www.thepaperbank.co.uk

4(a)	Gravitational field	1			
	as force acting on unit mass	1			
	Electric field	1			
	Strong nuclear force	1			
	as force acting on unit (positive) charge	1			
	Magnetic field	1			
	as force acting on unit current in a wire of unit length	, 1			
	Allow as force acting on unit charge travelling with unit velocity	1 6			
	Notes: deduct 1/3 if done in terms of units	•			
	deduct 2/3 if done with equations for which the symbols are not e	xplained			
(b)	Gravitational field - only one kind of mass so force is always in the directio	n of			
	the field	1			
	Electrical field - two kinds of charge	1			
	Strong nuclear force	1			
	so force is either in the direction of the field (with positive charge) or in the	opposite			
	direction to the field (with negative charge)	1			
	Magnetic field – direction of wire controls direction of force	1			
	maximum force when wire is at right angles to field	1			
	direction of force given by (Fleming's) left hand rule	1			
	Distance over which forces act / inverse square law	1			
	force given by BII sin θ where θ is angle between field and current	1 5			
	Maximum 5 awarded for 5 of these 8 points				
(c)	protons in the nucleus have a positive charge	1			
	they are very close (10 ⁻¹⁵ m) so repel each other strongly				
	(because of their charge)	1			
	since the nucleus does not explode there must be an (even larger) force holding it				
	together	1			
	magnetic and/or gravitational forces are (far) too small	1			
	so there must be another force, provided by some other (nuclear) field	1 3	14		
	Maximum 3 awarded for 3 of these 5 points				