

Mark Scheme 2825/02 January 2002

1.	(a)	length is shorter width is greater	(1) (1)
	(b)	(for equilibrium) clockwise moments = anticlockwise (give this mark if lines 2 + 3 are equated to each other) (700x0.50sin60)+(200x0.75sin60) = E x 0.50 x sin10 = 5000 N	(1) (1) (1)
	(c)	clockwise moment is less perpendicular distance of cog and A to J are less so less effort is required by back muscles	(1) (1) (1)
2.	(a)(i) (ii)	Focus principal axis	(1) (1)
		$p = 1/f \text{ or } p = 1/4 \times 10^2$ p = 25 D 1/f = 1/v + 1/u 1/0.040 = 1/v + 1/0.060 v = 0.12 m	(1) (1) (1) (1)
3.	(a)	distance moved by the object , while image remains in focus	(1
	(b)	image gets slightly larger / or smaller image becomes (progressively) more blurred further from u	(1 (1
	(c)	ref. to the experiment object moving closer / further away while remaining acceptably in focus on the screen this distance if the "depth of field"	(1 (1
4.	(a)	shape of graph minimum at 10 ⁻¹² Wm ⁻² minimum at about 1-3kHz range about 20 – 20kHz or cut-offs	(1 (1 (1
	(b)	resonance at about 1-3 kHz due to shape / length of ear canal	(1 (1
	(ii)	10^{-12} Wm^{-2} $10^2 = k/f^2$ $k = 10^2$, $P = 10^2/16 = 6.25$ $IL = 10 \lg I/I_0$	(1 (1 (1
		= 10 lg 6.3 / 10 ⁻¹² = 128 = decibel or dB	(1 (1) ecf (1 (1)
5.	(ii)	$3.0 \text{ div } \times 0.0030 \text{ ms div}^{-1}$ = $0.0090 \text{ ms or } 9.0 \mu\text{s}$ 2s = vt $4000 \times .0090 = 1.8 \text{ cm}$ $2 \text{ d} = 1500 \times 2 \times 3.0 \times 10^{-6} = 9.0 \times 10^{-3}$ d = 0.45 cm	(1) (1) (1) (1) (1)

Downloaded from http://www.thepaperbank.co.uk 2825/02 Mark Scheme January 2002

	• •	If gel is not used, most reflection occurs at air / skin boundary so large first peak	(1)
		Reason: e.g. there is a very large difference in the acoustic impedance either side of this boundary	(1)
6.	(a)(i)	electrons accelerated by high p.d. or power supply energy is converted into k.e. of electrons gain high k.e.	(1) (1)
		sudden deceleration at target nuclei / or most of the k.e. is converted into	
	(ii)	heat at the cathode (small amount of) energy converted into X-ray of ref. to characteristic X-rays atoms of medium would obstruct electrons so k.e. at anode not large enough to produce X-rays	(1) (1) (1)
			(1)
	(b)(i) (ii)	different decelerations different energy photons released any two from:	(1) (1)
	()	more energtic X-rays / bigger E / lower λ	(1)
		more X-rays / greater intensity pk. Shifted towards higher E	(1) (1)
		more characteristic lines	(1)
	(c)(i)	plotting of points	(2)
	(ii)	shape 0.085 cm	(1) (1)
		$I/I_0 = e^{-\mu x}$	(1)
		Ln $0.50 = -\mu x$ use ans to cii to calculate μ	(1)
		$\mu = 8.15 \text{ cm}^{-1}$ ecf (ii) (1)
7.	(a)	Direct: damage to DNA / nucleus / or (molecules ionised) / DNA may be	/4\
		broken into fragments / sections removed causing cell death / impaired functions	(1) (1)
		Indirect: OH ions formed in ionisation of water	(1)
		These react with DNA molecules	(1)
	(b)(i)	$6.4 \times 10^{-6} \times 5.4 \times 10^{-18} / 1.6 \times 10^{-19}$	(1)
		$= 2.16 \times 10^{-4}$	(1)
	(ii)	Gy (or $J Kg^{-1}$) H = Q x D	(1) (1)
	\··/	for γ -rays H = 2 x 2.16 x 10 ⁻⁴ / 2 = 2.16 x 10 ⁻⁴ Sv	(1)
		for α -particles H = 20 x 2.16 x 10 ⁻⁴ /2 = 21.6 x 10 ⁻⁴ Sv	(1)
		$= 2.4 \times 10^{-3} \text{ Sv}$	(1)

Downloaded from http://www.thepaperbank.co.ukanuary 2002

8.	(a)	cable has resistance hence there is a pd this is not available (energy dissipated in	across cable to user	(itself) get ½ of last two marks)	(1 (1 (1	ı)
	(b)	air emerging from a hence it has ke/edd work/energy used a (ohmic) heating in g any 2	es gainst friction		(1 (1 (1 2 ma	l) l) l)
	(c)(i)	$m = \pi R^2 I \rho$ = $\pi (0.75)^2 \times 8 \times$ (= 18.4 kg)	1.3		-	1) 1)
	(ii)	$ke = \frac{1}{2} m v^2$ = $\frac{1}{2} \times 18 \times 8^2 = 5$	76 J (A	ilow 588 J from ½ x 18.4 x 8		1) 1)
	(iii)	average power outp		x 576 = 230 W 35W from 0.4 x 588)	(*	1)
	(d)	W = Pt 7 x 10 $t = 3.0(4) \times 10^4$ s (=		v 2.98 x 10 ⁴ from 7 x 10 ⁶ = 2		1) 1)
	(e)(i)	Chemical (not pote	ntial or electric	cal)	(1)
	(ii)	Energy dissipated/	wasted as he	at inside battery/wires	(1)
	(f)(i)	E = P t = 160 x 40 x 360	$0 = 2.3 \times 10^7$	J		1) 1)
	(ii)	total stored energy	$= 2.3 \times 10^7 \times $ = 2.88×10^7	100 / 80 J		1) 1)
	(iii)	no. of batteries	= 2.88 x 10 ⁷ (=4.1) i.e 5	/ (7 x 10 ⁶)		1) 1}

2825/03 Downloaded from https://www.ntheepaperbank.co.ukanuary 2002

7. (a)	cable has resistance hence there is a pd across cable (itself) this is not available to user (energy dissipated in cable could get ½ of last two marks)	1 1 1
(b)	air emerging from aerogenerator is moving hence it has ke/eddies work/energy used against friction (ohmic) heating in generator any 2	1 1 1 1 2 max
(c)(i)	$m = \pi R^2 I \rho$ = $\pi (0.75)^2 \times 8 \times 1.3$ (= 18.4 kg)	1 1
(ii)	ke = $\frac{1}{2} m v^2$ = $\frac{1}{2} \times 18 \times 8^2 = 576 \text{ J}$ (allow 588 J from $\frac{1}{2} \times 18.4 \times 8^2$)	1 1
(iii)	average power output = (40 / 100) x 576 = 230 W (allow 235 W from 0.4 x 588)	1 ,
(d)	$W = P t$ $7 \times 10^6 = 230t$ $t = 3.0(4) \times 10^4 \text{ s} (=8.45 \text{ h})$ (allow 2.98 x 10 ⁴ from 7x10 ⁶ = 235 t)	1
(e)(i)	chemical (not potential or electrical)	1
(ii)	energy dissipated/wasted as heat inside battery/wires	1
(f)(i)	E = P t = 160 x 40 x 3600 = 2.3 x 10 ⁷ J	1 1
(ii)	total stored energy = $2.3 \times 10^7 \times 100/80$ = $2.88 \times 10^7 \text{ J}$	1 1
(iii)	no. of batteries = 2.88 x 10 ⁷ / (7 x 10 ⁶) (= 4.1) ie 5	1 1

Downloaded from http://www.thepaperbank.co.uk