2822/01	Mark Scheme		June 2001
1. (a)(i)	Coulomb / C	(Allow Ampere second / As)	В1
(ii)	Voltmeter		B1
(b)(i)	P = VI V = 36 / 3.0 p.d. = 12 (V)	(Allow other variant)	C1 C1 A1
(ii)	$E = 36 \times 600$ energy = 2.1(6) x 10 ⁴ (J) \approx	2.2 x 10⁴ (J)	C1 A1
(iii)	$\Delta Q = I\Delta t / Q = It$ $\Delta Q = 3.0 \times 600$ charge = 1.8 x 10 ³ (C)	(Allow other variant)	C1 C1 A1
(iv)	N = $1.8 \times 10^3 / 1.6 \times 10^{-19}$ number = $1.1(3) \times 10^{22} \approx 1$	(Possible ECF) .1 x 10 ²²	C1 A1
			[Total: 12]
2. (a)	R = V / I Symbols defined: R = resistance, V = p.d. and I = current (Allow use of 'voltage' instead of 'p.d.') (Resistance = p.d. per (unit) current scores 2/2) (V = IR with all symbols defined scores 1/2) (Resistance = p.d. per (unit) amp / A scores 1/2) (Resistance = volts per (unit) current scores 1/2) (Resistance = volts per (unit) ampere scores 0/2)		
(b)(i)	$ \propto V / \div V = constant$ Current $\propto p.d. / p.d. \div current = constant and (metallic conductor at) constant temperature (Allow symbols in (b)(i) if defined in (a))$		
(ii)	One correct response Three correct responses	scores 1/2 scores 2/2	
(c)	Ammeter in series Voltmeter across cell or the (No credit if the meters or	ne thermistor their positions are contradictory)	B1 B1
			[Total: 8]

2822/01	Mark Scheme	June 2001
3. (a)(i)	R = 50Ω I = $3.0 / 50$ current = $0.06 (A)$	C1 C1 A1
(ii)	$P = VI / V^2 / R / I^2 R$ power = 3.0 x 0.06 power = 0.18 (W) (Possible ECF)	C1 A1
(b)(i)	'Constant' temperature implied (wtte) (Do not allow reference to Ohm's law or to 'heating')	B1
(ii)	1. $40 (\Omega)$ 2. $A = \pi \times (1.0 \times 10^{-5})^2 = 3.1(4) \times 10^{-10} (m^2)$ $R = \rho L/A$ (Allow other variant) $40 = 5.4 \times 10^{-8} \times L / 3.1 (4) \times 10^{-10}$ (Possible ECF) $L = 0.23(3) (m) \approx 0.23 (m)$ Length is 9too) long, therefore must be coiled (wtte)	B1 B1 C1 C1 A1 B1
		[Total: 12]
4. (a)(i)	p.d.: Energy 'lost' by charge(s)/ electron(s) (as heat / light) e.m.f: Energy 'gained' by charge(s)/ electron(s) (as electrical) (p.d. linked to energy transfer to heat/light and e.m.f to energy transelectrical scores 1/2)	B1 B1 sfer to
(ii)	Tick only for J C ⁻¹	B1
(b)	(Sum of) e.m.f.s = sum / total of p.d.s / sum of voltages (in a loop) (Do not allow equation unless the symbols are defined) Energy is conserved	B1 B1
(c)(i)	R = 1.28 / 0.80 resistance = 1.6(0) (Ω)	C1 A1
(ii)	R = R ₁ + R ₂ / 1.60 = r + 1.10 / r = (1.28 – 0.8 x 1.1) / 0.8 r = 0.5(0) (Ω) ≈ 0.5 (Ω) (Possible ECF)	C1 A1
(iii)	p.d = 1.10 x 0.80 = 0.88 (V) (Possible ECF)	B1
		[Total: 10]

C1

A1

[Total: 10]

 $F = 2.5 \times 10^{-5} \times 3.0 \times 2.0$

force = 1.5×10^{-4} (N)

(ii)

2822/01		Mark Scheme			June 2001	
7.	(a)	hf: ¢: ½ mv _{max} ²	Photon energy / quantum of energy Work function (energy for the metal) Maximum K.E / E _k of electron	B1 B1 B1		
	(b)(i)	f = 3.0 x 10 ⁸ frequency = unit: hertz /	C1 A1 B1			
	(ii)	ϕ = hf ϕ = 6.63 x 10 ⁻³⁴ x 4.62 x 10 ⁻¹⁴ = 3.0(6) x 10 ⁻¹⁹ (J) \approx 3.1 x 10 ⁻¹⁹ (J) (Possible ECF) ϕ = 3.0(6) x 10 ⁻¹⁹ / 1.6 x 10 ⁻¹⁹ work function energy = 1.9(1)(eV) (Answer of 1.91(eV) without supporting calculations scores 2/3)				
	(c)	(Rate / number of) electrons / photons increases (Rate of / number of) photons double, ∴ (Rate of / number of) ele double				
8.		Electrons behave like a wave Moving / travelling electrons behave like a whale Interference / diffraction effects are associated with 'waves' Wavelength of electron is 'comparable to' / same as / atomic size / separation Sensible experimental detail, e.g.: 'Diffraction rings' or 'Diffracted by carbon'		(Total: 11) C1 A1 B1 B1		
		λ = h/p / λ = λ for the pe λ of person	= h/mv rson calculated, $\lambda \sim 10^{-36}$ m (very) small (compared with gap to show diffraction)	B1 B1 B1 [Total: 8]		

9. Any one from:

B1x1

Travel at the speed of light / 3 x 10⁸ ms⁻¹ (in vacuum)

Travel in vacuum Transverse waves

Consists of oscillating electric and magnetic fields
Can be reflected / diffracted / refracted / polarised etc.

Principal radiation named

M1x3

One sensible application for each

(See guide below)

A1x3

Guide:

γ-rays

Sterilization (of food) / radiotherapy / treatment of cancer

X-rays

(X-ray) pictures of bones / flaws in pipes

u.v.

Sterilization (equipment) / fluoresce (powders/paint) /

suntan beds

visible

Photography / seeing things with eye

i.r.

Security / i.r. camera / (TV) remote control

microwaves

microwave oven for cooking / communication / mobile

phones

radio (waves)

Communication / commercial broadcast (not just 'radio') /

T.V

[Total: 7]

QWC applied to Q8 and Q9 (See marking criteria) [4]