2822/01	Marking Scheme Janu		January 2	ary 2001	
1(a)(i) (ii)	Ammeter Voltmeter				B1 B1
(b)	<i>I</i> : current ∆ <i>t</i> : time (interval / duration)				B1 B1
(c)(i) (ii) (iii)	$I = 7.5 \times 10^{3} / 1500$ $I = 5.0 \text{ (A)}$ $V = P / I$ $V = 1.2 \times 10^{3} / 5.0$ $V = 240 \text{ (V)}$ $E = 1.2 \times 10^{3} \times 1500$ $E = 1.80 \times 10^{6} \text{ (J)}$		(allow other vari (possible e.c.f) (-1 for missing k (-1 for missing k penalise once o	or 10 ³ factor)	C1 A1 C1 C1 A1 C1 A1
(iv)	units = 1500/3600 x 1.2 = 0.5 cost = 0.5 x 6.4 = 3.2 (p)		units = $1.8 \times 10^6 / 3$ (possible (e.c.f if (ii		C1 A1
2(a)	R = V / I symbols defined: R = resistar (V = IR with all symbols defin (R = p.d. / voltage per unit and (R = p.d. / voltage per unit and	ned sco urrent s	ores 1/ 2) scores 2/2)	= current	C1 A1
(b)	Resistance decreases as temperature increases. Correct <u>curve</u> with <i>R</i> decreasing as temperature increases.			B1 B1	
(c)(i) (ii)	Resistance increases (as V in Temperature increases / atomore electron collisions (with 1. $P = 24 \times 2$ $P = 48$ (W) 2. $V = 12$ (V) when current is $R = 12$ / $2.0 = 6.0$ (Ω) 3. $R_T = 6.0 + 5.0 = 11.0$ (Ω)	ns vibra atoms	ate more /)	V from graph)	B1 C1 A1 C1 A1 B1
	4. $V_L = 11.0 \times 2.0 = 22 \text{ (V)}$ $r = (24-22) / 2.0 = 1.0 \text{ (}\Omega\text{)}$		$R_{circuit} = 48 / 2.0$ r = 12.0 - 11.0		C1 A1
3(a)	$ \rho = RA / L $ Symbols defined: $ \rho = \text{resistivity}, A = \frac{\text{cross-sect}}{\text{cross-sect}} $ ($R = \rho L / A$ with all symbols defined:			and $L = length$	M1 A1
(b)(i) (ii)	$A = \rho L / R$ $A = 4.3 \times 10^{-6} \times 1.2 \times 10^{2} / 5$ $A = 1.0(3) \times 10^{-8} (m^{2})$ $t = 1.0(3) \times 10^{8} / 2.0 \times 10^{-3}$ $t = 5.1(6) \times 10^{6} (m)$.0	(-1 for using L as 2 (possible e.c.f)	2.0 mm)	C1 C1 A1 B1

.3

2822/01	Marking Scheme	January 2001
4(a)	Sum of currents = zero (at junction) / sum of currents in = sum of currents out (at junction) Charge is conserved.	n) B1 B1
(b)(i)	$V = 6.0 \times 400 / (1200 + 400)$ $I = 6.0 / 160$	$\frac{d}{d}R = R_1 + R_2 \qquad C1$ $00 = 3.75 \times 10^{-3} \text{ (A)}$
	$V = 3.75 \times 10^{-3} \times 400$ V = 1.5(V) (Answer of 4.5 (V) scores 1/2)	10 ⁻³ x 400 C1
(ii)	1. $R_D = 1.5 / 0.1 = 15 (\Omega)$ $R = R_1 R_2 / (R_1 + R_2) / 1/R_T = \sum 1/R_1$ $R = 400 \times 15 / (400 + 15) = 14.5 = 15 (\Omega)$ (poss	C1 C1 sible e.c.f) A1
	2. $V \approx 6.0 \times 15 / (1200 + 15)$ $I \approx 6.0 / 1200$ $V \approx 0.07 (V)$ $V \approx 4.98 \times 10^{-2}$ (Answer of 5.93 (V) scores 1/2)	$+ 15 \approx 4.98 \times 10^{-3}$ (A) C1 $^{3} \times 15 = 0.07$ (V) A1
	3. Resistance of device is small(er) / current in dev p.d. across device is small(er)	vice is small(er) / B1
5(a)	Fig. 5.1: (long straight) wire / conductor Fig. 5.2: (single) coil / two (parallel) wires	B1 B1
(b)(i) (ii)	Zero 1. $F = BIL$ $F = 1.2 \times 10^{-2} \times 0.30 \times 1.5 \times 10^{-2}$ $F = 5.4 \times 10^{-5}$ Unit: newton / N 2.(Fleming's) L.H.R (-1 for L = 0.4) (do not all 0.4)	•
6(a)	(Moving) electrons behave like a wave	B1
(b)(i)		/ M1 length, m = mass elocity / speed A1
(ii)	1. $E = 0.01 \times 10^6 \times 1.6 \times 10^{-19}$ 10 ⁶ factor in answer use of 1eV = 1.6 x 10 ⁻¹⁹ (J) in answer $E = 1.6 \times 10^{-15}$ (J) 2. $E_k = \frac{1}{2}$ m v ² 1.6 x 10 ⁻¹⁵ = 0.5 x 9.1 x 10 ⁻³¹ x v ² $v = 5.9(3) \times 10^7$ (ms ⁻¹) 3. $\lambda = 6.63 \times 10^{-34} / 9.1 \times 10^{-31} \times 5.9(3) \times 10^7$	M1 M1 A0 C1 C1 A1 C1 ssible e.c.f)
(c)	Shorter wavelength Mass of proton is larger (than an electron's).	B1 B1

7(a) Any <u>five</u> from: Photons are involved / E = hf

- Surface electrons are involved.One-to-one exchange of energy between photon and electron
- Electrons carry negative charge, therefore removal means reduction in (negative) charge (of plate).
- Electron released when photon energy > workfunction (energy).
- Electron emission related to threshold frequency.
- Energy conserved in the interaction (between photon and electron).
- Einstein's equation mentioned ($hf = \frac{1}{2} mv^2 + \emptyset$).

Any two from:

More photons (in a given time).

More electrons are removed (in a given time)

The plate loses charge quicker.

B1 x 2

B1 x 5

(b)(i) 1.
$$f = 3.0 \times 10^8 / 6.3 \times 10^{-7}$$
 C1
 $f = 4.7(6) \times 10^{14}$ A1
unit: hertz / Hz B1
2. $E = h f$ C1
 $E = 6.63 \times 10^{-34} \times 4.76 \times 10^{14} = 3.1(6) \times 10^{-19}$ (J) (possible e.c.f) A1
(ii) $N = 1 \times 10^{-3} / 3.16 \times 10^{-19}$ (possible e.c.f) C1
 $N = 3.1(7) \times 10^{15}$ (s⁻¹) A1
(iii) Energy of photon is greater/ blue light has shorter wavelength. B1
Reduced (rate) of photons / fewer photons (in a given time) B1

8 Any two from:

B1 x 2

- Travel at the speed of light / 3 x 108 (ms⁻¹)(in vacuum).
- Travel in vacuum / space.
- Transverse waves.
- · Oscillating electric and magnetic fields.
- Can be reflected / diffracted / refracted / polarized etc.

Principal radiation named.
Correct wavelength. (see guide below)

B1 x 3

B1 x 3

Guide: γ -rays $10^{-16} - 10^{-12} \text{ m}$ X-rays $10^{-11} - 10^{-9} \text{ m}$ u.v $\sim 10^{-8} \text{ m}$ visible $\sim 10^{-7} \text{ m}$ i.r $\sim 10^{-6} \text{ m}$

microwaves $10^{-4} - 10^{-2}$ m radio waves $> 10^{-1}$ m

(If unit for wavelength not given, then penalty of -1)

QWC applied to Q7 & Q8

Maximum of 4 marks