Centre No.							Pape	er Refer	ence			Surname	Initial(s)
Candidate No.					6	7	3	1	/	0	1	Signature	
		Paper	r Reference((s)									

6731/01 **Edexcel GCE Physics**

Advanced Subsidiary

Unit Test PHY1

Thursday 15 January 2009 – Afternoon

Time: 1 hour 15 minutes

Materials required for examination	Items included with question papers
Nil	Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and

Answer **ALL** questions in the spaces provided in this question paper.

In calculations you should show all the steps in your working, giving your answer at each stage. Calculators may be used.

Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets.

There are seven questions in this paper. The total mark for this paper is 60.

The list of data, formulae and relationships is printed at the end of this booklet.

Advice to Candidates

You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, taking account of your use of grammar, punctuation and spelling.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

N30615A

Total Turn over

Examiner's use only

Team Leader's use only

Question Number

1

2

advancing learning, changing lives

W850/R6731/57570 6/6/6/5/2/2/2/2800

Leave blank

1. The diagram shows an arrangement for determining the type(s) of nuclear radiation emitted by a radioactive source.

Each of four sources is investigated by inserting absorbers, one at a time, between the detector and the source. The absorbers are paper, a 5 mm thick aluminium sheet and a 1 cm thick lead block. The detector and source are kept close to one another throughout.

Complete the table below to show the results and conclusions for these sources.

Source	Absorber	Effect on count rate	Nuclear radiations emitted
	Paper	No change	
A	Aluminium	Reduced to background	
	Lead	Reduced to background	
	Paper		
В	Aluminium		Alpha and beta
	Lead		
	Paper	Reduced	
С	Aluminium	Significantly reduced	
	Lead	Further reduced	
	Paper		
D	Aluminium		Alpha
	Lead		

Q1

(Total 4 marks)

2. An aeroplane is transporting goods to a remote area. It is flying horizontally at a constant speed. It releases a parcel as it passes over a point A on the ground. Figure 1 and Figure 2 show graphs of the horizontal and vertical velocities of the parcel during the time it takes for the parcel to fall to the ground. It is assumed that air resistance is negligible.

Figure 2

	the acceleration of free fall,
	Acceleration =
	(2)
)	the height above point A from which the parcel was released,
	Height =
	(2)
:)	the horizontal distance from A at which the parcel has the same horizontal and vertical speeds.
	Horizontal distance =
	Horizontal distance =(3)

ı) (i)	Calculate the distance of the ball above the point of release 3.8 s after it was thrown.
	Distance = (4)
	(1)
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.
(ii)	State an assumption you have made.

	in why moving his hands downwards as he catches the ball will reduce the force ball applies to his hand. You may be awarded a mark for the clarity of your.
•••••	
••••••	
•••••	
•••••	
	(:
	(Total 10 marks

Leave blank

4. (a) The enlarged diagram shows a circular copper disc. It has a diameter of 30 mm and a thickness of 5.0 mm.

Show that the weight of the disc is about $0.3\ N.$

Density of copper = 8900 kg m⁻³

(3)

8

b) (i) State Newton	's first law of motion			
			•••••	
			•••••	
				(2)
(ii) Two conner d	iscs as described in pa	art (a) of the question	n are nlaced on t	
	own in the diagram be		r are praced on v	op or one
Surface	A			
	В			
	re 2 are free-body for	_		-
and the resultant d	ownward forces actin	_		-
and the resultant d magnitude of the	ownward forces actin forces P , Q , X and Y .	g on the discs A and	B respectively.	-
and the resultant d magnitude of the Figure 1	ownward forces actin forces P , Q , X and Y . (Disc A)	g on the discs A and Figure 2 (I	B respectively. Disc B)	-
and the resultant of magnitude of the Figure 1	ownward forces actin forces P , Q , X and Y .	g on the discs A and Figure 2 (If X , magnitud	B respectively. Disc B)	-
and the resultant of magnitude of the Figure 1 • P, magnit	ownward forces actin forces P , Q , X and Y . (Disc A) ude =N	g on the discs A and Figure 2 (E	B respectively. Disc B) le =N	-
and the resultant of magnitude of the Figure 1 • P, magnit	ownward forces actin forces P , Q , X and Y . (Disc A)	g on the discs A and Figure 2 (If X , magnitud	B respectively. Disc B) le =N	-
and the resultant of magnitude of the Figure 1 P , magnit A Q , magnit	ownward forces actin forces P , Q , X and Y . (Disc A) ude =	Figure 2 (I) $X, \text{ magnitud}$ $Y, \text{ magnitud}$	Disc B) le =N	Label the
and the resultant of magnitude of the Figure 1 Figure 1 P, magnit A Q, magnit (iii) A force F for	ownward forces actin forces P , Q , X and Y . (Disc A) ude =N ude =N	Figure 2 (I) $X, \text{ magnitud}$ $Y, \text{ magnitud}$	Disc B) le =N	Label the
and the resultant of magnitude of the Figure 1 P , magnit A Q , magnit	ownward forces actin forces P , Q , X and Y . (Disc A) ude =N ude =N	Figure 2 (I) $X, \text{ magnitud}$ $Y, \text{ magnitud}$	Disc B) le =N	Label the
and the resultant of magnitude of the resultant of the r	ownward forces actin forces P , Q , X and Y . (Disc A) ude =N ude =N	Figure 2 (I) $X, \text{ magnitud}$ $Y, \text{ magnitud}$ aw pair with the force	Disc B) le =	Label the
and the resultant of magnitude of the second resultant of the second resultan	ownward forces actin forces P , Q , X and Y . (Disc A) ude =	Figure 2 (I) $X, \text{ magnitud}$ $Y, \text{ magnitud}$ aw pair with the force	Disc B) le =	(2)
and the resultant of magnitude of the second secon	ownward forces actin forces P , Q , X and Y . (Disc A) ude =	Figure 2 (I) $X, \text{ magnitud}$ $Y, \text{ magnitud}$ aw pair with the force	Disc B) le =	(2)

5. (a) State the principle of moments.

(b) Figure 1 shows a pedal bin which is used to collect waste.

Figure 1

The lid is raised by placing a foot on the pedal. Figure 2 shows the mechanism that makes this happen.

Figure 2

10

Leave	
blank	

Rod L and rod M are separately connected to a common axis at A. A is free to move

(i)	A force of 27 N is applied to the pedal as shown. Calculate the upward force the rod L will apply to the lid. Assume the rods L and M and the pedal have negligible weight.
	Force =(2
(ii)	27 N is the minimum force that must be applied to the pedal to raise the lid.
	Calculate the weight of the lid.
	Weight of lid = \dots (2)
(iii	Determine the size and direction of the resultant normal contact force that acts o pivot 2 when 27 N is applied to the pedal.
	Size of contact force =
	Direction of contact force =
	(Total 8 marks

(a)) State the principle of conservation of energy.	
(u)	state the principle of conservation of energy.	
		-
		•
	(2	
	γ-	,
(b)	The diagram shows an incline.	
	P	
	9.0m	
	30°	
	A box of mass 6.5 kg is released from rest at point P. It slides 9.0 m to the bottom o	f
	the incline.	1

alculate the loss in gravitational potential energy of the box.
Loss in gravitational potential energy =(3)

 Coin in binatia anom	
Gain in kinetic energ	gy =(2)
. Explain how the principle of co	ot equal its loss in gravitational onservation of energy still applies
 	(2)
	(Total 9 marks)

Leave	
blank	

(2)

7. (8	The radioisotope iodine-131 is used in medicine to diagnose problems in the thyroid gland. It undergoes beta-minus decay to form xenon (Xe). Complete the nuclear equation for this decay.
	$^{131}_{53}I = +$ (2)
(1	Define the meaning of the decay constant of a radioisotope.
	(1)
(6	The decay constant of iodine-131 is $9.9 \times 10^{-7} \text{s}^{-1}$. Show that its half-life is about 8 days.

	TOTAL FOR PAPER: 60 MARKS END
	(Total 11 marks)
	(2)
	nma radiation is also emitted in the decay of iodine-131. Explain why this ssion does not affect the nuclear composition of the atom.
	(2)
	Mass of iodine =
(ii)	$131\mathrm{g}$ of iodine-131 contains 6.0×10^{23} atoms. Calculate the total mass of iodine that must be given to this patient.
	Number of atoms = \dots (2)

List of data, formulae and relationships

Data

Speed of light in vacuum $c = 3.00 \times 10^8 \,\mathrm{m \ s^{-1}}$

Acceleration of free fall $g = 9.81 \,\mathrm{m \, s^{-2}}$ (close to the Earth) Gravitational field strength $g = 9.81 \,\mathrm{N \, kg^{-1}}$ (close to the Earth)

Rectilinear motion

For uniformly accelerated motion:

$$v = u + at$$

$$x = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2ax$$

Forces and moments

Moment of F about $O = F \times (Perpendicular distance from F to O)$

Sum of clockwise moments about any point in a plane = Sum of anticlockwise moments about that point

Dynamics

Force $F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$

Impulse $F\Delta t = \Delta p$

Mechanical energy

Power P = Fv

Radioactive decay and the nuclear atom

Activity $A = \lambda N$ (Decay constant λ)

Half-life $\lambda t_{\frac{1}{2}} = 0.69$

Experimental physics

Percentage uncertainty = $\frac{\text{Estimated uncertainty} \times 100\%}{\text{Average value}}$

Mathematics

 $\sin(90^{\circ} - \theta) = \cos\theta$

Equation of a straight line y = mx + c

Surface area cylinder = $2\pi rh + 2\pi r^2$

sphere = $4\pi r^2$

Volume $\operatorname{cylinder} = \pi r^2 h$

sphere = $\frac{4}{3}\pi r^3$

For small angles: $\sin \theta \approx \tan \theta \approx \theta$ (in radians)

 $\cos\theta \approx 1$