Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	7	3	4	/	0	1	Signature	

Paper Reference(s)

6734/01

Edexcel GCE

Physics

Advanced Level

Unit Test PHY 4

Wednesday 11 June 2008 - Morning

Time: 1 hour 20 minutes

Materials	required	for	examination
NEI			

Items included with question papers

	Exam	iner's us	e only
ſ			
]	Геат L	eader's u	ise only
Γ			

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	
7	

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Answer ALL questions in the spaces provided in this question paper.

In calculations you should show all the steps in your working, giving your answer at each stage. Calculators may be used.

Include diagrams in your answers where these are helpful.

Information for Candidates

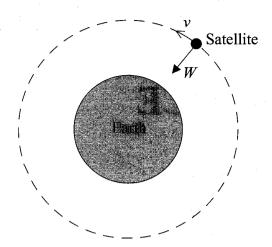
The marks for individual questions and the parts of questions are shown in round brackets. There are seven questions in this paper. The total mark for this paper is 60.

The list of data, formulae and relationships is printed at the end of this booklet.

Advice to Candidates

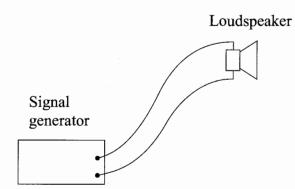
You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, taking account of your use of grammar, punctuation and spelling.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.


Turn over

Total

W850/R6734/57570 7/6/6/5/1


1. (a) A satellite is moving at a constant speed v in a circular orbit around the Earth. The only force acting on the satellite is its weight W.

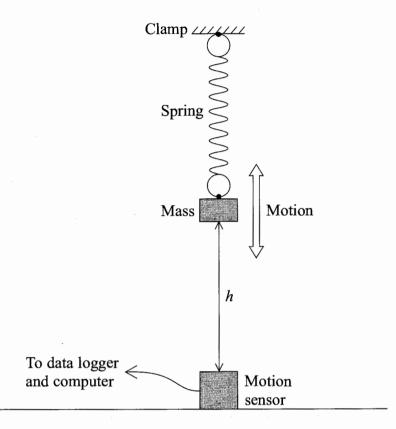
(i)	Although an unbalanced force is acting on the satellite, its speed does not change.
	Explain why.
(ii)	According to Newton's second law, the unbalanced force causes an acceleration.
	Explain how the satellite can accelerate while its speed remains constant.
	(4)

A satellite used in the global positioning system travels in an orbit of radius 2.7×10^4 km. At this distance from the Earth, the acceleration of the satellite is $0.56\mathrm{ms^{-2}}$.	
Calculate its speed.	
9 1	
$Speed = \dots (2)$	
(Total 6 marks)	
	_

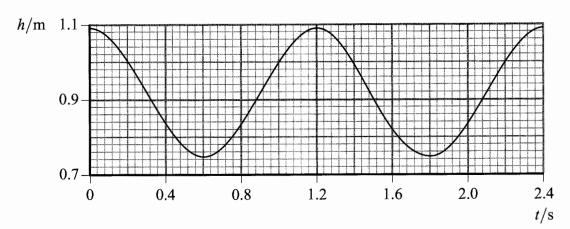
2. A loudspeaker connected to a signal generator is set up facing a wall.

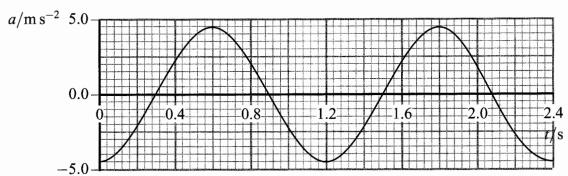
Sound waves from the loudspeaker are reflected from the wall and a stationary wave is produced in the region between the loudspeaker and the wall.

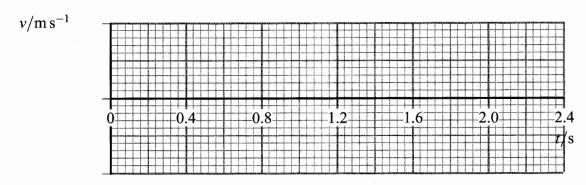
(a) (i)	Describe how you would use a small microphone, connected to a cathode ray oscilloscope, to demonstrate the presence of the stationary wave.
	······
	(2)
(ii)	Explain how the nodes and antinodes are produced.
	(3)


	(4)
415	
(ii)	In practice, the problem is not serious. Suggest a reason why.
(ii)	
(ii)	
(ii)	In practice, the problem is not serious. Suggest a reason why.
(ii)	In practice, the problem is not serious. Suggest a reason why. (2)
(ii)	In practice, the problem is not serious. Suggest a reason why.
(ii)	In practice, the problem is not serious. Suggest a reason why. (2)

Leave


Leave blank

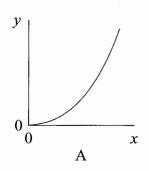

3. A motion sensor, connected through a data logger to a computer, is used to study the simple harmonic motion of a mass on a spring.

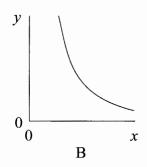


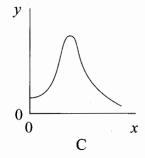
The data logger records how the height h of the mass above the sensor varies with the time t. The computer calculates the velocity v and acceleration a and displays graphs of h, v and a against t. Idealised graphs of h and a for two cycles are shown opposite.

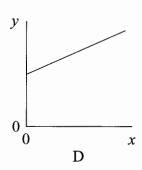
Leave blank

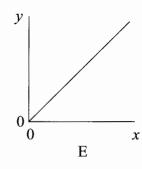
(a)	(i)	Determine the amplitude and frequency of the motion.	
			••••
			••••
		Amplitude = Frequency =	(2)
	(ii)	Show that the maximum velocity of the mass is approximately $0.9~\mathrm{m\ s^{-1}}$.	(-)

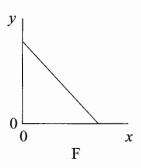

(iii) Complete the above set of graphs by sketching the velocity-time graph for the same interval.

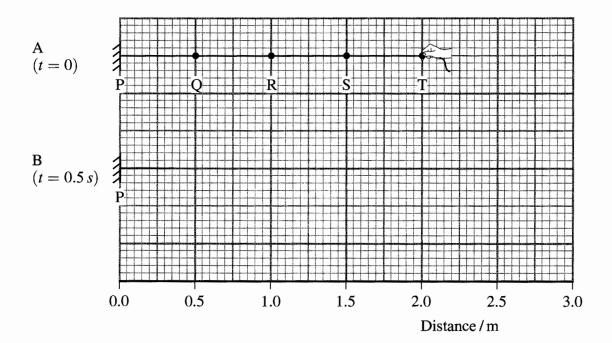

(2)


(2)


(b) (1)	Define simple harmonic motion.
	(2)
(ii)	Describe how you would use data from the graphs of h and a against t to check that the motion of the mass was simple harmonic. (Note that you are not required to actually carry out the check.)
	(4)
	(4) (Total 12 marks)
. , , , , , , , , , , , , , , , , , , ,	


4. Six graphs, A to F, are shown below.




Tick the appropriate box in each row of the table below to show which graph is obtained when the variables given in the table are plotted. Each graph may be used once, more than once or not at all.

Verichle on a swig	Variable on <i>x</i> -axis			Gra	aph		-
Variable on <i>y</i> -axis	variable on x-axis	A	В	С	D	Е	F
Amplitude of a forced oscillation	Frequency of the driving force						
Intensity of radiation from a point source in a vacuum	Distance from the source						
Spacing of fringes in a double slit experiment	Wavelength of the radiation						
Observed wavelength of a spectral line	Recession speed of the galaxy emitting the light						

Q4

(Total 4 marks)

5. A physics teacher uses a simple model to illustrate the behaviour of the Universe. A long elastic cord, clamped at one end P, has knots Q, R, S and T tied in it at equal intervals. Initially the cord is straight but unstretched with the knots 0.50 m apart, as shown in part A of the diagram.

The teacher grasps knot T and pulls it away from P at a steady speed of $0.80\,\mathrm{m\,s^{-1}}$. The cord stretches uniformly.

- (a) (i) On part B of the diagram, mark the position of knot T after 0.50 s.
 - (ii) Hence complete part B by marking the positions of knots Q, R and S after $0.50\,\mathrm{s}.$

(2)

(b) Explain how this model represents the Universe and its behaviour.

(2)

	Using values taken from the diagram, show how the model illustrates Hubble's la	~ v v .
		•••••
		••••
		•••••
		•••••
		(3)
(d)	State two ways in which this demonstration is not a good model of the Universe.	
(4)		
	1	••••
		••••
	2	
		(2)
		·ks)
	(Total 9 mar	ILO J
		KSj
		KS
		KS
		iko)
		ins)
		in the second se
		iko)
		in the second se
		in the second se

BLANK PAGE

Leave	
blank	

7.	(a)	pen	pendulum clock the timing is regulated by oscillations of a simple pendulum. The dulum consists of a heavy mass attached to a thin metal rod. It swings through a d small amplitude.
		(i)	In one such clock, the period of the pendulum is 2.00 s. Calculate its length.
			Length = \dots (2)
		(ii)	Pendulum clocks are inaccurate because the period of swing varies slightly under different conditions. Suggest one reason for such a variation.
			(1)
		(iii)	Instead of a simple pendulum, a mass-spring system could be used to regulate the timing of a clock. Suggest, with a reason, whether the period of the mass-spring system would also vary under different conditions.
			(1)

•	Ve results in a particular transition between energy Calculate the energy difference, in eV, between these Energy difference =
levels in the caesium atom.	ve results in a particular transition between energy Calculate the energy difference, in eV, between these Energy difference =
levels in the caesium atom.	ve results in a particular transition between energy Calculate the energy difference, in eV, between these Energy difference =
levels in the caesium atom.	ve results in a particular transition between energy Calculate the energy difference, in eV, between these
levels in the caesium atom.	ve results in a particular transition between energy
levels in the caesium atom.	ve results in a particular transition between energy
levels in the caesium atom.	ve results in a particular transition between energy
levels in the caesium atom.	ve results in a particular transition between energy
(iii) The absorption of the way	
	(1)
(ii) To which part of the electron	omagnetic spectrum does this wave belong?
	(1)
(i) Show that the wavelength of	of the wave is approximately 33 mm.

List of data, formulae and relationships

Data

$$c = 3.00 \times 10^8 \,\mathrm{m\ s^{-1}}$$

$$G = 6.67 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$$

$$g = 9.81 \text{m s}^{-2}$$

(close to the Earth)

$$g = 9.81 \text{ N kg}^{-1}$$

$$e = 1.60 \times 10^{-19} \,\mathrm{C}$$

$$m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$$

$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

$$u = 1.66 \times 10^{-27} \text{ kg}$$

$$R = 8.31 \text{J K}^{-1} \text{ mol}^{-1}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{Fm}^{-1}$$

$$k = 1/4\pi\varepsilon_0$$

$$= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

Rectilinear motion

For uniformly accelerated motion:

$$v = u + at$$

$$x = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2ax$$

Forces and moments

Moment of F about $O = F \times (Perpendicular distance from F to O)$

Sum of clockwise moments \equiv Sum of anticlockwise moments about that point

about any point in a plane

Dynamics

$$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$$

$$F\Delta t = \Delta p$$

Mechanical energy

$$P = Fv$$

Radioactive decay and the nuclear atom

$$A = \lambda N$$

(Decay constant
$$\lambda$$
)

$$\lambda t_{\frac{1}{2}} = 0.69$$

Electrical current and potential difference

$$I = nAQv$$

$$P = I^2 R$$

Electrical circuits

$$V = \mathcal{E} - Ir$$

(E.m.f.
$$\varepsilon$$
; Internal resistance r)

$$\Sigma \boldsymbol{\varepsilon} = \Sigma I R$$

$$R = R_1 + R_2 + R_3$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Heating matter

energy transfer =
$$l\Delta m$$
 (Specific latent heat or specific enthalpy change l)

energy transfer =
$$mc\Delta T$$
 (Specific heat capacity c; Temperature change ΔT)

$$\theta$$
/°C = $T/K - 273$

Kinetic theory of matter

$$T \propto$$
 Average kinetic energy of molecules

$$p = \frac{1}{3} \rho \langle c^2 \rangle$$

Conservation of energy

$$\Delta U = \Delta Q + \Delta W$$

(Energy transferred thermally
$$\Delta Q$$
;

Work done on body
$$\Delta W$$
)

$$= \frac{\text{Useful output}}{\text{Input}}$$

maximum efficiency =
$$\frac{T_1 - T_2}{T_1}$$

Circular motion and oscillations

$$\omega = \frac{\Delta \theta}{\Delta t} = \frac{v}{r}$$

(Radius of circular path
$$r$$
)

$$a = \frac{v^2}{r}$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

Simple harmonic motion:

displacement
$$x = x_0 \cos 2\pi f t$$

maximum speed =
$$2\pi f x_0$$

acceleration
$$a = -(2\pi f)^2 x$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

Waves

Intensity

$$I = \frac{P}{4\pi r^2}$$

(Distance from point source *r*; Power of source *P*)

Superposition of waves

Two slit interference

$$\lambda = \frac{xs}{D}$$

(Wavelength λ ; Slit separation s; Fringe width x; Slits to screen distance D)

Quantum phenomena

Photon model

$$E = hf$$

(Planck constant h)

Maximum energy of photoelectrons

$$= hf - \varphi$$

(Work function φ)

Energy levels

$$hf = E_1 - E_2$$

de Broglie wavelength

$$\lambda = \frac{h}{p}$$

Observing the Universe

Doppler shift

$$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$$

Hubble law

$$v = Hd$$

(Hubble constant H)

Gravitational fields

Gravitational field strength

$$g = F/m$$

for radial field

 $g = Gm/r^2$, numerically

(Gravitational constant G)

Electric fields

Electrical field strength

$$E = F/Q$$

for radial field

$$E = kQ/r^2$$

(Coulomb law constant k)

for uniform field

$$E = V/d$$

For an electron in a vacuum tube $e\Delta V = \Delta (\frac{1}{2}m_e v^2)$

Capacitance

Energy stored

$$W = \frac{1}{2}CV^2$$

Capacitors in parallel

$$C = C_1 + C_2 + C_3$$

Capacitors in series

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Time constant for capacitor

discharge

$$=RC$$

18

Magnetic fields

$$F = BIl$$

Magnetic flux density (Magnetic field strength)

$$B = \mu_0 nI$$

(Permeability of free space
$$\mu_0$$
)

$$B = \mu_0 I / 2\pi r$$

$$\Phi = BA$$

$$\varepsilon = -\frac{N\Delta\Phi}{\Delta t}$$

(Number of turns
$$N$$
)

Accelerators

$$\Delta E = c^2 \Delta m$$

$$F = BQv$$

Analogies in physics

$$Q = Q_0 e^{-t/RC}$$

$$\frac{t_{\frac{1}{2}}}{RC} = \ln 2$$

$$N = N_0 e^{-\lambda t}$$

$$\lambda t_{\frac{1}{2}} = \ln 2$$

Experimental physics

Percentage uncertainty =
$$\frac{\text{Estimated uncertainty} \times 100\%}{\text{Average value}}$$

Mathematics

$$\sin(90^{\circ} - \theta) = \cos\theta$$

$$\ln(x^n) = n \ln x$$

$$ln(e^{kx}) = kx$$

$$y = mx + c$$

cylinder =
$$2\pi rh + 2\pi r^2$$

sphere =
$$4\pi r^2$$

$$cylinder = \pi r^2 h$$

sphere =
$$\frac{4}{3}\pi r^3$$

$$\sin\theta \approx \tan\theta \approx \theta$$

$$\cos\theta \approx 1$$

BLANK PAGE