Electrical current and potential difference

Electric current

I = nAQv

Electric power

 $P = I^2 R$

Electrical circuits

Terminal potential difference

$$V = \mathcal{E} - Ir$$

(E.m.f. \mathcal{E} ; Internal resistance r)

Circuit e.m.f.

$$\Sigma \mathcal{E} = \Sigma IR$$

Resistors in series

$$R = R_1 + R_2 + R_3$$

Resistors in parallel

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Heating matter

Change of state:

energy transfer = $l\Delta m$ (Specific latent heat or specific enthalpy change l)

Heating and cooling:

energy transfer = $mc\Delta T$ (Specific heat capacity c; Temperature change ΔT)

Celsius temperature

$$\theta$$
/°C = $T/K - 273$

Kinetic theory of matter

 $T \propto$ Average kinetic energy of molecules

Kinetic theory

$$p = \frac{1}{3} \rho \langle c^2 \rangle$$

Conservation of energy

Change of internal energy

$$\Delta U = \Delta Q + \Delta W$$

(Energy transferred thermally ΔQ ;

Work done on body ΔW)

Efficiency of energy transfer

$$= \frac{\text{Useful output}}{\text{Input}}$$

For a heat engine, maximum efficiency $=\frac{T_1-T_2}{T_1}$

Experimental physics

Percentage uncertainty =
$$\frac{\text{Estimated uncertainty} \times 100\%}{\text{Average value}}$$

Mathematics

$$\sin(90^{\circ} - \theta) = \cos \theta$$

Equation of a straight line

$$y = mx + c$$

Surface area

$$cylinder = 2\pi rh + 2\pi r^2$$

sphere = $4\pi r^2$

Volume

12

$$cylinder = \pi r^2 h$$

sphere = $\frac{4}{2}\pi r^3$

For small angles:

$$\sin\theta \approx \tan\theta \approx \theta$$

(in radians)

 $\cos\theta \approx 1$

Pre-Standardisation

Centre No.			Paper Reference		Surname		C	Other names						
andidate Io.			6	7	3	3	1	2	A	Signature	a.	Be	uneg	hem

Edexcel GCE

Physics

Advanced Subsidiary

Unit Test PHY3 Practical Test Group 1

Wednesday 14 May 2008 – Afternoon

Time: 1 hour 30 minutes

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, other names and signature.

PHY3 consists of questions 1A and 1B. Each question is allowed 35 minutes plus 5 minutes writing-up time. There is a further 10 minutes for writing-up at the end. The Supervisor will tell you which experiment to attempt first.

Write all your results, calculations and answers in the spaces provided in this question booklet.

In calculations you should show all the steps in your working, giving your answer at each stage.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets.

The total mark for this paper is 48.

The list of data, formulae and relationships is printed at the end of this booklet.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

Supervisor's Data and Comments

Tick if circuit set up for

(Give details below)

candidate

Tick if the

candidate

voltmeter

connecting the

Weight of the

suspended rule

needed assistance

a(i)

a(ii)

Comments

For Examiner's use only

For Team Leader's use only

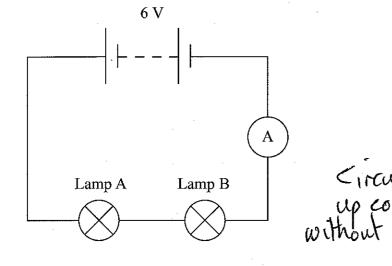
Question Leave

blank

numbers

1A

1B


Total

advancing learning, changing lives

Question 1A

(a) (i) Set up the circuit as shown in the diagram below. Note at this stage the voltmeter with which you have been provided is not used.

Before you connect your circuit to the power supply, have your circuit checked by the Supervisor. You will be allowed a short time to correct any faults. If you are unable to set up the circuit, the Supervisor will set it up for you. You will only lose two marks for this.

(ii) Connect the power supply and measure the current I in the circuit, I for I m H or better I = 0.055 A. | between 50 m A and 65 m A with wit (1)

(iii) Observe lamps A and B. State and explain your observations.

Lamp B is brighter than	(1)
lamp A	
Temperature of lamp B must be greater than temperature of lamp A	
of lang A	(1)
, , , , , , , , , , , , , , , , , , ,	(2)

(iv) Use the voltmeter to measure the potential difference V_A across lamp A and then the potential difference V_B across lamp B. If you do not know how to connect the voltmeter into the circuit, ask the Supervisor for assistance. You will only lose one mark for this.

$$V_{\rm A} = 0.22 \, \text{V}$$
 $V_{\rm B} = 5.66 \, \text{V}$
 $V_{\rm B} = 5.66 \, \text{V}$
 $V_{\rm B} = 5.66 \, \text{V}$
 $V_{\rm B} = 5.66 \, \text{V}$

Disconnect the power supply.

5.0 V ≤ VA + VB ≤ 6.5 V No indication that Supervisor gave help (1)

Leave blank

2

List of data, formulae and relationships

Data

Speed of light in vacuum $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$

Acceleration of free fall $g = 9.81 \,\mathrm{m \, s^{-2}}$ (close to the Earth)

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to the Earth) Elementary (proton) charge $e = 1.60 \times 10^{-19} \text{ C}$

Electronic mass $m_e = 9.11 \times 10^{-31} \text{ kg}$ Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Molar gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Rectilinear motion

For uniformly accelerated motion:

$$v = u + at$$

$$x = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2ax$$

Forces and moments

Moment of F about $O = F \times (Perpendicular distance from F to O)$

Sum of clockwise moments about any point in a plane = Sum of anticlockwise moments about that point

Dynamics

Force
$$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$$

Impulse
$$F\Delta t = \Delta p$$

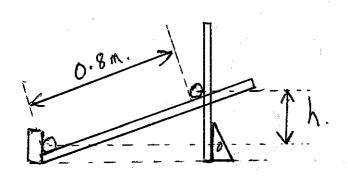
Mechanical energy

Power
$$P = Fv$$

Radioactive decay and the nuclear atom

Activity
$$A = \lambda N$$
 (Decay constant λ)

Half-life $\lambda t_1 = 0.69$



(į	g) A student wishes to investigate how $T \sin \theta$ depends the rule at the 90.0 cm mark. You are to plan this in include:	•	blank
	(i) an indication of the values in the equation which a	are constant,	
	(ii) a description of how the experiment would be per	formed,	
:	(iii) a sketch of the graph to be plotted,	ά ·	
	(iv) an indication of the expected results.	1 / \	
) p, q, W and g are constant	(1)	
î.) Vary M.	(1)	
•	Charge the height of the borr holding		
	the dowel to make the rule horizontal	(1)	
	Measure hz (and h,) to		
	determine O (and sin O)	(1)	
	Measure the length of the		
	stretched spring (to find the	(1) { Max (3)	
	extensión)		
	Use the calibration graph to determine		
	the farce.	(1)	
li.) Plot Tsin O against M.	(1)	
ĵv) Straight line + VE intercept	(1)	8
	Slope = g(2p) Intercept = W.	(1)	
	, , , ,	(8)	Q1B
	TOTAL	(Total 24 marks)	27
	END	L FOR PAPER: 48 MARKS	
	END		

Leave

The normal operating voltage of both lamps is 6 V. Explain the relevance of your values of V_A and V_B to your observations in (iii).	blank
VB 2 6 V, hence lamp close	
to normal operating voltage (1)	
VA << 6V, much smaller	
than normal operating sollage (1)	
Hence lamp B is close to	
the state of the s	
normal brightness and lamp A	
is dim or does not glow. (1)	/
(6)	6
(b) (i) You have been provided with an inclined runway. Determine the time t taken for	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/4/
the sphere to travel a distance x of 0.800 m down the runway. f from ≥ 3 result f	
F = 1.415 [2 results (11
(2)	2
(ii) The final speed v of the sphere at the end of the distance x is given by	
$v = \frac{2x}{t}$. Calculate v.	
$v = \frac{1}{t}$. Calculate v . $V = \frac{1}{t}$. Correct calc.	(1)
$v = 2 \times 0.8$ $v = 1.41$ $= 1.13 \text{ m/s}.$ Correct calc. $\geq 2s.t. + \text{unit}$ (1)	ヘ
(1)	
(iii) Use the top pan balance to measure the mass m of the sphere. Hence find the linear kinetic energy of the sphere after travelling $0.800 \mathrm{m}$ down the runway.	
Mass = 4.78 g. Correct	
CT exhat by the	k (1)
K.E. = 2 × 4.78 × 10 × 1.13 Correct calc	
= 3.05×10^{-3} J. $2/3s.f. + unit($	1)
(2)	2
	_

(iv) In the space below draw a diagram of the inclined runway. Show carefully on your diagram the vertical height h through which the sphere moved when it travelled a distance of 0.800 m down the runway.

Kunway clear. (not just a

Determine the height h. State any techniques you used to obtain an accurate . h recorded to

h = 10,2cm	nearest monor better with unit (1)
	with unit (1)
Vertical rule checked with	
set square / Eye level	
with reading	(ı)

Hence find the gravitational potential energy lost by the sphere as it moved down

mgh =
$$4.78 \times 10^{-3}$$
 J. 2s.f. + unit (1

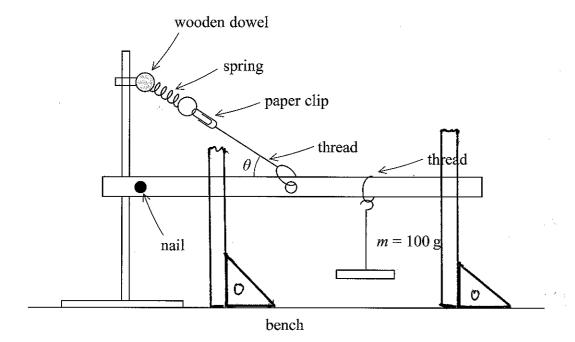
(e)	Measure the stretched length s of the coiled part of the sp	pring. Using your value of <i>l</i>	
	from part (a) determine the extension e of the spring.	15 recorded to the	
	s = 174 mm.	s recorded to the nearest markand in the region of 20 cm.	2/1
	1 - 1	region of 20 cm.	Cy
	e = 174 - 23 = 151 mm.	e calculated 1	11
		with unit seen somewhere	Cy
	Using the calibration graph from part (b) determine the t	ension T in the spring.	١.
	$T = \mathcal{L} \cdot \mathcal{L} \cdot \mathcal{N}$	correctly with unit	(1)
	-	θ (3)	\supseteq
	William at a material bearing and in a mailting with the fallow		\mathcal{I}

(f) When the rule is horizontal and in equilibrium, the following equation applies:

$$T \sin \theta = g \left(\frac{q}{p}\right) M + W$$
 where

p = distance from the centre of the nail to the centre of mass of the rule, which maybe assumed to be at the 50.0 cm mark,

q = distance from the centre of the nail to the position on the rule from which mass Mis suspended,


W = weight of the metre rule.

Determine p and q and use the information from parts (d) and (e) to calculate W.

p = 40.0 cm.	
q = 80.0 cm.	p and q correct (1)
W = Tsin Q - Mg (4p)	Correct
= 4.4 sin (44.6) - 0.1 x 9.81	substitution (1)
× (0.8)	Correct calc
= 3.09 - 1.96	of W to 2/3s.f.
= 1/13 N.	+ unit (1)
	(3)

(c) The apparatus shown in the diagram below has already been set up for you. Move the mass M = 100 g so that it is suspended from the 90.0 cm mark on the rule.

blank

Adjust the height of the boss holding the wooden dowel until the metre rule is horizontal. Explain how you ensured that the metre rule was horizontal. You may add to the above diagram if you wish.

Measured the height above the	
bench at 2 places.	(1)
Used set square as shown to	
check metre rule vertical	(1)
	(2)

(d) Measure the height h_1 of the centre of the nail above the bench and the height h_2 of the centre of the dowel above the bench. Hence calculate the angle θ between the metre rule and the thread.

TOTAL MIC WILL WILL WILL WILL WILL WILL WILL WI	. !
h, = 345 mm	heights recorded
$h_2 = \frac{1}{2}(747+735) = 741 \text{mm}$	to the nearest
	man with units
$\tan \theta = \frac{741 - 345}{400}$	seen once (1)
= 0.99.	Correct calc of
0 = 44.6°	0 > 2s++ +unit(1)
	$^{\prime}$ $^{(2)}$

					blank
(v	Calculate the	value of $\frac{\text{Kinetic energy ga}}{\text{Gravitational poisson}}$	ined by the spl	nere .	
(Cia i i a i i a i i a i a i a i a i a i	••••••••••••••••••••••••••••••••••••••	ost	
	3-05	x10-3 4.78×10-3	3	• • ** • •	
	•••••			Value 0.60 > 0 [0.50 > 0.9	
		= 0.64		0.60 > 0	1.80 (R)
				50.5070.9	n(1)
					المراريا٧
		percentage difference bet	ween your va	lue of this ratio and	d the
		lue which is 0.71.			\
	10 diff	= 0.64-0.71		Correct co	<u>l</u> c
		0.71	•	with o	71
	***************************************			1	
		= 9.9%		as denomi	nator
					(1) 7
			, - 4 4		

			•		$\begin{array}{c c} (3) & Q1A \\ \hline \end{array}$
		the state of the s		(Total 24 ma	(rks) 24
					viores
	Α.				
	* * * * * * * * * * * * * * * * * * *				
	-				
•					
				·	

Ouestion 1B

(a) Many modern road bridges have a single pillar from which the bridge is suspended. You are to investigate a model of this arrangement using the extension of a spring to measure the force.

An identical spring to the one used in the experimental arrangement must first be calibrated. Measure the unstretched length l of the coiled part of the vertically suspended spring.

blank

(2)

and in range 1.6 cm to 2 fr cm (1) with unit 47.3-45.0 = 2.3 cm

Add the 100 g mass hanger to the spring and determine the extension x of the spring. Add further 100 g masses and determine the corresponding extensions.

The force *F* extending the spring is given by:

$$F = mg$$

where m = total mass suspended from the spring and g = gravitational field strength.

Use the table below for your results. The force F has been calculated for you. You may use the additional column to assist in the recording of your results.

m/kg	F/N	lowest-point/cm.	x/mm
0.00	0.00	45.0	0
0.10	0.98	42.4	26
0.20	1.96	38-7	63
0.30	2.94	35.1	99
0.40	3.92	31.6	134
0.50	4.91	28.0	170
			-

(b) Using the grid on page 7 plot a graph of x against F.

Scale readings shown (1)

5 points ± 2mm from
examiners best fit line (2)

[4 points --- (1)]

blank x/mm140 120 100 80 60 40 20 Suitable scale (1) Plots and line (1) F/N