Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.		- AND THE CONTRACT OF THE CONT	6	7	3	2	/	0	1	Signature	

6732/01

Edexcel GCE

Physics

Advanced Subsidiary

Unit Test PHY2

Friday 9 June 2006 – Morning

Time: 1 hour 15 minutes

Materials required for examination

Items included with question papers

Examiner's use only Team Leader's use only

Question Number	Leav Blan
1	
2	
3	The state of the s
4	
5	
6	
7	

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Answer ALL questions in the spaces provided in this question paper.

In calculations you should show all the steps in your working, giving your answer at each stage. Calculators may be used.

Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets. There are seven questions in this paper. The total mark for this paper is 60.

The list of data, formulae and relationships is printed at the end of this booklet.

Advice to Candidates

You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, taking account of your use of grammar, punctuation and spelling.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy C2006 Edexcel Limited

Turn over

Total

1.	(a)	(i)	Write the word equation that defines potential difference.	
			(1)	

(ii) The unit of potential difference is the volt. Express the volt in terms of base units only.

(3)

(b) A 6.0 V battery of negligible internal resistance is connected to a filament lamp. The current in the lamp is 2.0 A.

Calculate connected				is	transf	ferred	in	the	filament	when	the	battery	is
							• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • •						••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••	•••••		• • • • • •	•••••			•••••		••••

Energy transferred = (3)

(Total 7 marks)

Q1

I = nAQv	
Q is the charge on a charge carrier.	
hat quantities do n and v represent?	
	(2)
student has a metal conductor and a plastic insulator of the same dimensional plies the same potential difference across each. Explain how the relative vor the metal conductor and plastic insulator affect the current in each.	
	•••••
	(2)
the student connects two pieces of copper wire, A and B, in scries with each a battery. The diameter of wire A is twice that of wire B. Calculate the edrift velocity in wire B and explain your ar	(2) ch other ratio of
the student connects two pieces of copper wire, A and B, in series with each d a battery. The diameter of wire A is twice that of wire B. Calculate the	(2) ch other ratio of
the student connects two pieces of copper wire, A and B, in series with each d a battery. The diameter of wire A is twice that of wire B. Calculate the	(2) ch other ratio of
the student connects two pieces of copper wire, A and B, in series with each d a battery. The diameter of wire A is twice that of wire B. Calculate the	(2) ch other ratio of
the student connects two pieces of copper wire, A and B, in series with each d a battery. The diameter of wire A is twice that of wire B. Calculate the	(2) ch other ratio of
the student connects two pieces of copper wire, A and B, in series with each d a battery. The diameter of wire A is twice that of wire B. Calculate the	(2) ch other ratio of
the student connects two pieces of copper wire, A and B, in series with each d a battery. The diameter of wire A is twice that of wire B. Calculate the	(2) ch other ratio of
the student connects two pieces of copper wire, A and B, in series with each d a battery. The diameter of wire A is twice that of wire B. Calculate the	(2) ch other ratio of
the student connects two pieces of copper wire, A and B, in series with each d a battery. The diameter of wire A is twice that of wire B. Calculate the	(2) ch other ratio of

2.

3. The circuit shows a battery of negligible internal resistance connected to three resistors.

(a) Calculate the potential difference across the 15 Ω resistor.

.....

Potential difference =(1)

(b) Calculate the current I_1 in the 4.0 Ω resistor.

.....

$$I_1 = \dots$$
 (3)

(c) Calculate the current I_2 and the resistance R.

.....

$$I_2 = \dots$$

$$R = \dots$$

(3)

Q3

(Total 7 marks)

BLANK PAGE

4. Graph A shows how the potential difference across a battery varies with **the current** supplied. Graph B shows how the current in a filament lamp varies with the p.d. across it.

(a) (i) Use graph A to determine the internal resistance and the e.m.f. of the battery.

Internal resistance =

e.m.f. =

(2)

(ii) The lamp is connected to the battery. Determine the current in the lamp.

(1)

		NAC STATES THE STATES AND STATES
		eensternse Kin KEP-uEse"
Resistance =	(2)	STANCE OF THE PROPERTY AND STANCE OF THE PROPERTY OF THE PROPE
Draw a diagram of a circuit that would enable graph A to be plotted.		ederaterskendernaarina van en Leistelskilles
		Name (According to the property of the control of t
		of continuency property are dealered dominates in the continuency of t
		okarokono rozarrazoren kernikia eta 23
		The state of the s
	(2)	NAME OF TAXABLE PARTY.
Describe how you would use this circuit to obtain the data for the graph.		eren er eller v. Zer i Zer i Zel zer i Z
	•••••	ohermerschild-scalin-===38c
		- A professional above the second
		man man and and or \$1 [84" [87].
		decontamental will
	•••••	1
	(2)	Q.

_	T1		C	: 1 1		
5.	i ne	equation	for an	ideai	gas	1S

$$pV = nRT$$

(a) For each of these symbols, state the physical quantity and its S.I. unit. One has been done as an example for you.

Symbol	Physical quantity	S.I. unit
p		
V		
n		
R	Molar gas constant	$J K^{-1} mol^{-1}$
Т		

(4)

(b) An ideal gas of volume $1.0 \times 10^{-4} \, \text{m}^3$ is trapped by a movable piston in a cylinder. The initial temperature of the gas is $20 \, ^{\circ}\text{C}$.

	and its volume increas temperature of the gas		nt a constant pressure.
•••••			
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •			
		•••••	•••••

Temperature of gas =°C

(4)

Q5

(Total 8 marks)

•	(a)		fine the term specific latent heat of fusion.
			(3)
	(b)	(i)	Aluminium has a melting point of 660 °C. A sample of aluminium at 600 °C is heated steadily until its temperature reaches 700 °C. Sketch a graph to show how the temperature of the aluminium varies with time.
			Temp/°C
			700
			650
			600
			Time/s
			(3)
		(ii)	Explain the shape of your graph with reference to the potential energy and kinetic energy of the molecules.

		(4)
sunt temperature cal	ल्यान्त्र उद्यक्त्यहै जिसम्बार नवास्त्रक	
		•••••

N 2 2 3 6 3 A 0 9 1 6

Q6

(Total 10 marks)

7. A freezer contains a heat pump which pumps energy from the inside of the freezer to the outside. The diagram shows the energy flow for one day of use.

(a)	(i)	How much energy is transferred into the room?
		Energy =
		What principle have you applied to do this calculation?
		(2)
	(ii)	Why do you need an energy source to pump energy from the inside of the freezer to the outside?
		(1)
	(iii)	Assuming the inside of the freezer remains at a constant temperature, calculate the rate at which energy is flowing in through the walls of the freezer.

Rate of flow of energy =

(2)

(4)
nside the freezer there are cooling fins towards the top but not at the bottom. Explain low these fins cool the air in the freezer and why there are no fins at the bottom. You hay be awarded a mark for the clarity of your answer.
(3)
Energy =
l

END

List of data, formulae and relationships

Data

Speed of light in vacuum
$$c = 3.00 \times 10^8 \,\mathrm{m \ s^{-1}}$$

Acceleration of free fall
$$g = 9.81 \,\mathrm{m \ s^{-2}}$$
 (close to the Earth)

Gravitational field strength
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to the Earth)

Elementary (proton) charge
$$e = 1.60 \times 10^{-19} \text{ C}$$

Electronic mass $m_e = 9.11 \times 10^{-31} \text{ kg}$

Electronvolt
$$1eV = 1.60 \times 10^{-19} \text{ J}$$
Molar gas constant
$$R = 8.311 \text{ K}^{-1} \text{ mol}^{-1}$$

Molar gas constant
$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

Rectilinear motion

For uniformly accelerated motion:

$$v = u + at$$

$$x = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2ax$$

Forces and moments

Moment of F about $O = F \times (Perpendicular distance from F to O)$

Dynamics

Force
$$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$$

Impulse
$$F\Delta t = \Delta p$$

Mechanical energy

Power

P = Fv

Radioactive decay and the nuclear atom

Activity
$$A = \lambda N$$
 (Decay constant λ)

Half-life
$$\lambda t_{\downarrow} = 0.69$$

Electrical current and potential difference

$$I = nAQv$$

$$P = I^2 R$$

Electrical circuits

$$V = \mathcal{E} - Ir$$

(E.m.f. \mathcal{E} ; Internal resistance r)

$$\Sigma \mathcal{E} = \Sigma IR$$

$$R = R_1 + R_2 + R_3$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Heating matter

energy transfer =
$$l\Delta m$$
 (Specific latent heat or specific enthalpy change l)

energy transfer =
$$mc\Delta T$$
 (Specific heat capacity c; Temperature change ΔT)

$$\theta$$
/°C = $T/K - 273$

Kinetic theory of matter

$$T \propto$$
 Average kinetic energy of molecules

$$p = \frac{1}{3} \rho \langle c^2 \rangle$$

Conservation of energy

$$\Delta U = \Delta Q + \Delta W$$

(Energy transferred thermally ΔQ ; Work done on body ΔW)

$$= \frac{Useful output}{Input}$$

For a heat engine, maximum efficiency
$$=\frac{T_1 - T_2}{T_1}$$

Mathematics

$$\sin(90^{\circ} - \theta) = \cos\theta$$

$$y = mx + c$$

cylinder =
$$2\pi rh + 2\pi r^2$$

sphere =
$$4\pi r^2$$

cylinder =
$$\pi r^2 h$$

sphere =
$$\frac{4}{3}\pi r^3$$

$$\sin \theta \approx \tan \theta \approx \theta$$

$$\cos\theta \approx 1$$

Experimental physics

$$= \frac{\text{Estimated uncertainty} \times 100\%}{\text{Average value}}$$

BLANK PAGE

