

As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2				Paper
			GCE A/AS LEVEL – May/June 2009	9702	21
1	(a) (i)	micr	ometer (screw gauge) / travelling microscope	B1	[1]
	(ii)	eithe	er ohm-meter or voltmeter and ammeter		
	()		nultimeter/avo on ohm setting	B1	[1]
	(iii)	eithe	er (calibrated) c.r.o. <i>or</i> a.c. voltmeter and × √2	B1	[1]
	(b) de	nsity	= mass / volume	C1	
			= $580 / 6^3 = 2.685 \text{ g cm}^3$ (allow 2.68, 2.69, 2.7)	A1	
	0/2	uncar	tainty in mass = (10 / 580) × 100 = 1.7%	C1	
			tainty in volume = 3 × (0.1 / 6) × 100 = 5.0%		
			the indensity = 0.18 g cm^{-3}		
	de	nsity =	$= 2.7 \pm 0.2 \mathrm{g}\mathrm{cm}^{-3}$	A1	[5]
	(ar	nswer	2.69 ± 0.09 g cm ⁻³ scores 4 marks)		
2	(a) bal	ll mov	ing in <u>opposite</u> direction (after collision)	B1	[1]
			· · · · · · · · · · · · · · · · · · ·		
	(b) (i)	char	nge in momentum = 1.2 (4.0 + 0.8)	C2	
	(D) (I)		rect values, 1 mark; correct sign {values added}, 1 mark)	02	
		(007)	= 5.76 N s(allow 5.8)	A1	[3]
	(ii)	force	$e = \Delta p / \Delta t$ or $m\Delta v / \Delta t$		
			= 5.76 / 0.08 or 1.2 × 4.8 / 0.08		[0]
			= 72 N	A1	[3]
	(c) 5.7	7 6 = 3.	.6 × V	C1	
		= 1.6 r			[2]
	(d) eiti	her s	peed of approach = 4.0 m s ⁻¹ and		
			peed of separation = 2.4 m s ⁻¹		
		П	ot equal and so inelastic	A1	
	or	k	inetic energy before = 9.6 J and		
	o.		inetic energy after collision = 4.99 J	M1	
			inetic energy after is less / not conserved so inelastic		[2]
3	(a) pro	oduct o	of (magnitude of one) force and distance between forces	M1	
			e to <i>either</i> perpendicular distance between forces		
			or line of action of forces and perpendicular distance	A1	[2]
	(b) (i)	90°		B1	[1]
	(~ <i>)</i> (')	55		51	ניז
	(ii)		= F × 0.45 (allow e.c.f. for angle in (i))		
		F = 1	290 N	A1	[2]
		(allo	w 1 mark only if angle stated in (i) is not used in (ii))		

Page 3				llabus	Paper	
				GCE A/AS LEVEL – May/June 2009	9702	21
4 (a) ((i)		nge of shape / size / length / dimension		[2]
	(i	ii)	L = k	re	B1	[1]
(1		2e ½k		llow e.c.f. from extension)		
	1,	/₂e	and 2	2k	B1	
		_		allow e.c.f. from extension in part 2)		
	-	$\frac{2}{3}$ K	(a	llow e.c.f. from extension)	B1	[5]
5 (a	•		•	ase difference is π rad / 180°		
	ϵ	eith	er saı	ifference (between waves from S_1 and S_2) is $\frac{1}{2}\lambda$ / $(n + \frac{1}{2})\lambda$ me amplitude / intensity at M f amplitudes is 1.28 / ratio of intensities is 1.28 ²		[2]
		JITO	alio o	rampilitudes is 1.20 / ratio of intensities is 1.20	Бі	[2]
(1	۷	wav	eleng	erence between waves from S_1 and $S_2 = 28$ cmgth changes from 33 cm to 8.25 cm	B1	
				when λ = (56 cm,) 18.7 cm, 11.2 cm, (8.0 cm)inima	- 4	[4]
6 (a	a) ((i)		V / d 0 / (2.5 × 10 ⁻²)	C1	
			= 1.4	I × 10 ⁴ N C ⁻¹	A1	[2]
	(i	ii)	force = 1.4	e = Eq	C1 M1	
			= 2.2	24 × 10 ⁻¹⁵	A0	[2]
(1	b) ((i)	F = r	<i>na</i>	C1	
			= 2.4	$16 \times 10^{15} \mathrm{m s^{-2}} \dots (allow 2.5 \times 10^5) \dots$	A1	[2]
	(i	ii)		$\frac{1}{2}at^{2}$		
			<i>t</i> = 4	.5 × 10 ⁻⁹ s	A1	[2]
(•	eith or		ravitational force is normal to electric force ectric force horizontal, gravitational force vertical	B2	[2]
		•	cial c	ase: force/acceleration due to electric field >> force/accelerational field, allow 1 mark		

First variant Mark Scheme

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A/AS LEVEL – May/June 2009	9702	21
7	(a) (i) F	₹	B1	[1]
	(ii) 0).5R	B1	[1]
	(iii) 2	2.5R(allow e.c.f. from (ii))	B1	[1]
	(b) (i) I	$I_1 + I_2 = I_3$	B1	[1]
	(ii) E	$E_2 = I_3 R + I_2 R \qquad \dots$	B1	[1]
	(iii) E	$E_1 - E_2 = 2I_1R - I_2R$	B1	[1]
8	surro (<i>If sta</i>	of decay / activity / decay (of nucleus) is not affected by exundings undings attention of the statement of	B2	[2]
	(b) (i) g	jamma / γ	B1	[1]
	(ii) a	llpha / $lpha$	B1	[1]
	(iii) g	jamma / γ	B1	[1]
	(iv) b	peta / β	B1	[1]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9702	22

1	(a)	e.g. time (s), current (A), temperature (K), amount of substance (mol), luminous intensity (cdl)		
		1 each, max 3	B3	[3]
	(b)	density = mass / volume unit of density: kg m $^{-3}$ unit of acceleration: m s $^{-2}$ unit of pressure: kg m $^{-3}$ m s $^{-2}$ m kg m $^{-1}$ s $^{-2}$ (allow 4/5 for solution in terms of only dimensions)	C1 C1 C1 B1 B1	[5]
2	(a)	2.4s	A1	[1]
	(b)	in (b) and (c) , allow answers as (+) or (-) recognises distance travelled as area under graph line height = $(\frac{1}{2} \times 2.4 \times 9.0) - (\frac{1}{2} \times 1.6 \times 6.0)$ = 6.0 m (allow 6 m) (answer 15.6 scores 2 marks answer 10.8 or 4.8 scores 1 mark) alternative solution: $s = ut - \frac{1}{2}at^2$ = $(9 \times 4) - \frac{1}{2} \times (9 / 2.4) \times 4^2$ = 6.0 m (answer 66 scores 2 marks answer 36 or 30 scores 1 mark)	C1 C1 A1	[3]
	(c)	(i) change in momentum = 0.78 (9.0 + 4.2) (allow 4.2 ± 0.2)	C1 A1	[2]
		(ii) force = $\Delta p / \Delta t$ or $m\Delta v / \Delta t$	C1 A1	[2]
	(d)	(i) 2.9N	A1	[1]
		(ii) g = weight / mass	C1	
		$= 3.7 \mathrm{m \ s^{-2}}$	A1	[2]
3	(a)	product of (magnitude of one) force and distance between forces	M1	
	()	reference to either perpendicular distance between forces or line of action of forces & perpendicular distance	A1	[2]
				[⊸]
	(b)	(i) 90°	B1	[1]
		(ii) $130 = F \times 0.45$ (allow e.c.f. for angle in (i))	C1 A1	[2]

	Page 3		Mark Scheme: Tea	chers' version	Syllabus	Paper	
			GCE A/AS LEVEL -	May/June 2009	9702	22	
4	(a)		ge of shape / size / length / on n (deforming) <u>force is remove</u>			C1 A1	[2]
		(ii) L =	ke			B1	[1]
	(b)		w e.c.f. from extension)			B1 B1	
		½e and	2k			B1	
		$\frac{3}{2}$ e (a)	ow e.c.f. from extension in pa	nrt 2)		B1	
		$\frac{2}{3}k$ (all	w e.c.f. from extension)			B1	[5]
5	(a)	constan	phase difference			B1	[1]
	(b)		velength estimate 750 nm \rightarrow n = $\lambda D / x$			C1 C1	
			= (650 × 10 * × 2.4) / (0.8 = 1.8 mm marks from inappropriate esti			A1	[3]
	(c)	amplitud	complete destructive interfees no longer completely cancinges are lighter	el		M1 A1	[2]
6	(a)	=	V / d			C1	[0]
		-	1.4 × 10 N C	•••••		A1	[2]
		(ii) force	e = Eq			C1	
			$= 1.4 \times 10^{-15} \dots = 2.24 \times 10^{-15} \dots$			A0	[2]
	(b)	(i) F =	ma				
		=	$2.46 \times 10^{15} \text{ m s}^{-2}$ (allow 2.	5 × 10°)			[2]
		2.5 t =	$\frac{1}{2}at^{2}$			C1 A1	[2]
	(c)	or	ravitational force is normal to electric force horizontal, gravi ase: force/acceleration due t due to gravitational field	tational force vertical o electric field >> force/a		B2	[2]

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	•
	_	GCE A/AS LEVEL – May/June 2009	9702	22	
7	2R			A1	[3]
	(b) (i) I ₁ +	$I_3 = I_2 + I_4 \dots$		A1	[1]
	(ii) E ₂	$-E_1 = I_3R$		A1	[1]
	(iii) <i>E</i> ₂	$= I_3R + 2I_4R \dots$		A1	[1]
8	factors / (If states	ecay / activity / decay (of nucleus) is not affected by exenvironment / surroundings a specific factor(s), rather than giving general statement e 2 marks for two stated factors, but 1 mark only if one	t above,	B2	[2]
	(b) (i) gam	nma / γ		B1	[1]
	(ii) alph	na / α		B1	[1]
	(iii) gam	nma / γ		B1	[1]
	(iv) beta	a / β		B1	[1]