Surname	name		er Names			
Centre Number			Candid	ate Number		
Candidate Signature						

General Certificate of Education June 2006 Advanced Subsidiary Examination

PHYSICS (SPECIFICATION B) Unit 2 Waves and Nuclear Physics

PHB2

Friday 9 June 2006 9.00 am to 10.30 am

For this paper you must have:

- a calculator
- a ruler

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in **Section A** and **Section B** in the spaces provided.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want marked.
- A *Formulae Sheet* is provided on page 3. Detach this perforated page at the start of the examination

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.
 4 of these marks will be awarded for the Quality of Written Communication.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers. Questions 10 and 12 should be answered in continuous prose. Quality of Written Communication will be assessed in these answers.

Advice

 You are advised to spend about 30 minutes on Section A and about 1 hour on Section B.

For Examiner's Use						
Number	Mark	Number	Mark			
Α		7				
		8				
		9				
		10				
		11				
		12				
Total (Co	lumn 1)	-				
Total (Column 2)						
TOTAL						
Examiner	's Initials					

SECTION A

Answer all questions in this section.

		There are 25 marks i	n this section.	
The	following are regions i	n the electromagnetic	spectrum:	
		gamma radia microwave radio visible light	tion	
(a)	Name the region with	the highest photon e	nergy.	
				(1 mark)
(b)	Place these regions in	order of increasing v	vavelength in the table	e below.
		increasing	wavelength	
				-
				(2 marks)
Ultra	asound has a number of	f uses in medicine and	d industry.	
(a)	State one medical and	l one industrial use fo	or ultrasound.	
	medical use			
	industrial use			(2 marks)
(b)	State and explain who	ether an ultrasound wa	ave in air can be polar	
				(2 marks)
	(a) Ultra (a)	(a) Name the region with (b) Place these regions in Ultrasound has a number of (a) State one medical and medical use	The following are regions in the electromagnetic gamma radia microwave radio visible light (a) Name the region with the highest photon e increasing with the highest photon of the	radio visible light (a) Name the region with the highest photon energy. (b) Place these regions in order of increasing wavelength in the table increasing wavelength Ultrasound has a number of uses in medicine and industry. (a) State one medical and one industrial use for ultrasound. medical use industrial use. (b) State and explain whether an ultrasound wave in air can be polar increasing wavelength.

Detach this perforated page at the start of the examination.

Foundation Physics Mechanics Formulae

Waves and Nuclear Physics Formulae

moment of force
$$= Fd$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$s = \frac{1}{2}(u+v)t$$

for a spring, $F = k\Delta l$

energy stored in a spring $= \frac{1}{2}F\Delta l = \frac{1}{2}k(\Delta l)^2$

$$T = \frac{1}{f}$$

Foundation Physics Electricity Formulae

$$I = nAvq$$

terminal p.d. = E - Ir

in series circuit, $R = R_1 + R_2 + R_3 + \dots$

in parallel circuit, $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

output voltage across $R_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times \text{input voltage}$

fringe spacing = $\frac{\lambda D}{d}$

single slit diffraction minimum $\sin \theta = \frac{\lambda}{b}$

diffraction grating $n\lambda = d\sin\theta$

Doppler shift
$$\frac{\Delta f}{f} = \frac{v}{c}$$
 for $v \ll c$

Hubble law v = Hd

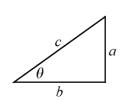
radioactive decay $A = \lambda N$

Properties of Quarks

Type of quark	Charge	Baryon number
up u	$+\frac{2}{3}e$	$+\frac{1}{3}$
down d	$-\frac{1}{3}e$	$+\frac{1}{3}$
ū	$-\frac{2}{3}e$	$-\frac{1}{3}$
\overline{d}	$+\frac{1}{3}e$	$-\frac{1}{3}$

Lepton Numbers

D4: -1-	Le	pton numbe	r L
Particle	L_e	L_{μ}	$L_{ au}$
e -	1		
e^-	-1		
$egin{array}{c} v_e \ \overline{v}_e \ \mu^- \end{array}$	1		
$\overline{v}_{\!\scriptscriptstyle e}$	-1		
μ-		1	
$\mu^{\scriptscriptstyle +}$		-1	
$egin{array}{c} v_\mu \ \hline v_\mu \ \hline au^- \end{array}$		1	
$\overline{v}_{\!\mu}$		-1	
τ-			1
$ au^{+}$			-1
$v_{ au}$			1
$\overline{v}_{ au}$			-1


Geometrical and Trigonometrical Relationships

circumference of circle = $2\pi r$

area of a circle = πr^2

surface area of sphere = $4\pi r^2$

volume of sphere $=\frac{4}{3}\pi r^3$

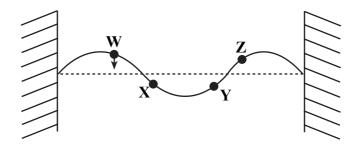
$$\sin \theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

$$c^2 = a^2 + b^2$$

There are no questions printed on this page


A ra	dioactive nucleus decays with the emission of an alpha particle and a gamma-ray photon.
(a)	Describe the changes that occur in the proton number and the nucleon number of the nucleus.
	proton number
	nucleon number (2 marks)
(b)	Comment on the relative penetrating powers of the two types of ionizing radiation.
	(1 mark)
(c)	Gamma rays from a point source are travelling towards a detector. The distance from the source to the detector is changed from 1.0 m to 3.0 m.
	Calculate
	intensity of radiation at 3.0 m intensity of radiation at 1.0 m
	answer(2 marks)
	(2 marks)

Turn over for the next question

3

4 Figure 1 shows the appearance of a stationary wave on a stretched string at one instant in time. In the position shown each part of the string has its maximum displacement. The arrow at W shows the direction in which the point W is about to move.

Figure 1

- (a) (i) Mark clearly on the diagram the directions in which points **X**, **Y** and **Z** are about to move.
 - (ii) State the conditions necessary for a stationary wave to be produced on the string.

`

(4 marks)

(b) In **Figure 1**, the frequency of vibration is 120 Hz.

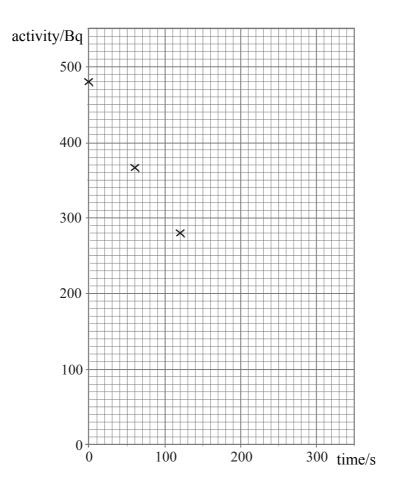
Calculate the frequency of the fundamental vibration for this string.

frequency of the fundamental vibration.

(2 marks)

5	betw	Radio waves are travelling from a transmitter to a detector. A sheet of hardboard is inserted between the detector and the transmitter without either of these being moved. When the hardboard is inserted, the intensity of the wave drops to $\frac{1}{16}$ th of its original value.			
	(a)	Calculate			
		amplitude of detected wave after hardboard insertion amplitude of detected wave before hardboard insertion			
		answer(2 marks)			
	(b)	Give two reasons for the change in intensity when the hardboard is inserted into the beam.			
		(2 marks)			
6		re 2 shows three alpha particles approaching a gold nucleus in an alpha-particle ering experiment. All three alpha particles have the same initial energy.			
		Figure 2			
		С ●			
		В ●			
		A ●			
	(a)	State which alpha particle will be deviated through the greatest angle.			
		(1 mark)			
	(b)	Draw on Figure 2 the path of the alpha particle that is deviated through the smallest angle. (2 marks)			
/T 0	16/DUD1	Turn over ▶			

SECTION B


Answer all questions in this section.

There are 50 marks in this section.

7 The table below gives the values for the activity of a radioactive isotope over a period of a few minutes.

time/s	0	60	120	180	240	300
activity/Bq	480	366	280	214	163	124

(a) Complete the graph below by plotting the remaining points and drawing an appropriate curve.

(3 marks)

(b)	Use the graph to determine the half-life of the isotope.	
	half-life	
	(3 ma	rks)
(c)	Initially there were 1.1×10^5 atoms of the isotope present. Calculate the decay probability of the isotope.	
	decay probability	
	(2 ma	rks)
	Turn over for the next question	

8

8 A motorist is driving along a straight road listening to the radio. His radio is receiving signals from two transmitters both broadcasting the same programme at the same frequency and in phase. The motorist notices that the intensity of the signal varies regularly from a maximum to a minimum and back to a maximum again. Figure 3 shows the arrangement seen from above.

Figure 3
transmitter 1 transmitter 2

wavefronts

not to scale

(a)	(i)	Explain how a maximum of signal intensity occurs. You may draw on Figure 3 to help your explanation.
	(ii)	The distance travelled by the car between successive maxima is 1.7 km and the wavelength of the signals is 0.54 km. The transmitters are both 570 km from the road.
		Calculate the distance between the transmitters.
		distance between transmitters
		(7 murs)

LEAVE MARGIN BLANK

(b)	The radio is tuned to a frequency of 560 kHz. The loudspeaker emits a maximum frequency of 8 kHz. Explain the significance of using these frequencies.
	(2 marks)
(c)	The transmitters emit an analogue signal. An alternative is to transmit the signal in a digital form. Explain how an analogue signal such as that shown in Figure 4 may be converted into a digital form.
	Figure 4
	pd/V 8 6 4 2 0 5 10 15 time/ms
	0 5 10 15 time/ms
	(3 marks)
(d)	Several digital channels can be multiplexed at a transmitter. Explain what is meant by <i>time division multiplexing</i> .

(3 marks)

(a)	State, in words, the Hubble law.	
		•••••
	(2 marks)
(b)	A galaxy at a distance of 2.2×10^{21} m is observed to be moving at a speed of 4.6×10^3 m s ⁻¹ relative to the Earth.	
	Calculate the Hubble constant in s ⁻¹ .	
	Hubble constant	s ⁻¹ 2 marks)
(c)	Calculate the percentage change in the frequency of a spectral line emitted from	Ź
(0)	galaxy in part (b) when observed on Earth, compared with the same line from a terrestrial source.	
	speed of light, $c = 3.0 \times 10^8 \text{ m s}^{-1}$	
		0./
	percentage change in frequency(% 2 marks)
(d)	State two properties of a star (other than its motion) that can be deduced from to of the spectrum of the star.	he study
		•••••
	······································	2 2 marks)

10 A free neutron decays into three particles.

State what these particles are, and go on to use the example of neutron decay to help you explain:

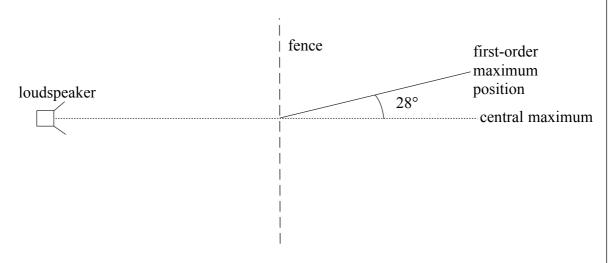
- the differences between hadrons and leptons
- the quark model of nuclear structure.

Two of the 7 marks are available for the quality of your written communication.	

(7 marks)

- 11 (a) A student stands some distance away from a wall and claps her hands. She listens to the echoes produced by the sound reflected from the wall and adjusts her rate of clapping so that each clap coincides with the echo of the previous clap. A fellow student counts the number of times she claps in 20 s.
 - (i) There were 47 claps in 20 s.

 Calculate the time between two successive claps.


time between two successive claps.....

(ii) The speed of sound in the air is 340 m s⁻¹. Calculate the distance of the student from the wall.

distance from wall (3 marks)

(b) The student goes on to carry out a diffraction experiment. She stands on one side of a fence that consists of evenly-spaced wooden strips. The fence behaves as a diffraction grating for sound waves. **Figure 5** shows the arrangement.

Figure 5

(i)	She uses a loudspeaker to send a sound wave of frequency 2.4 kHz towards the fence. Calculate the wavelength of this sound wave.
	speed of sound in air, $v = 340 \mathrm{m s^{-1}}$
	wavalanath
	wavelength
(ii)	A diffracted first-order maximum is observed at an angle of 28°. Calculate the spacing between adjacent wooden strips.
	strip spacing
(iii)	Determine the highest order of maximum that could be heard.

highest order (6 marks)

12	Both humans and mice use visible light in order to see. The aperture of a mouse eye is much smaller than that of a human eye, so that the resolutions of the two eyes are different.
	State what is meant by resolution and the factors that affect it. Go on to compare, giving physical explanations, the likely resolutions of the eyes of humans and mice.
	Two of the 6 marks are available for the quality of your written communication.
	(6 marks)

END OF QUESTIONS