Surname					Ot	her Names			
Centre Num	nber Candidate Numb			Number					
Candidate Signature		ure							

Leave blank

General Certificate of Education January 2005 Advanced Level Examination

PHYSICS (SPECIFICATION B) Unit 4 Further Physics

PHB4

Wednesday 26 January 2005 Morning Session

In addition to this paper you will require:

- · a calculator;
- a ruler.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want marked.
- All working must be shown, otherwise you may lose marks.
- Formulae Sheets are provided on pages 3 and 4. Detach this perforated page at the start of the examination.

Information

- The maximum mark for this paper is 75.
- Mark allocations are shown in brackets.
- You are expected to use a calculator where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

For Examiner's Use						
Number	Mark	Number	Mark			
1						
2						
3						
4						
5						
6						
7						
Total (Column	1)	~				
Total (Column	2)	>				
TOTAL						
Examine	r's Initials					

W05/PHB4 PHB4

Answer all questions.

Total for this question: 12 marks

1 (a) The equation that describes simple harmonic motion is

$$a = -\omega^2 x$$
.

State the meaning of the symbol ω in this equation and go on to explain the significance of the negative sign.

(b) **Figure 1a** shows a demonstration used in teaching simple harmonic motion. A sphere rotates in a horizontal plane on a turntable. A lamp produces a shadow of the sphere. This shadow moves with approximate simple harmonic motion on the vertical screen.

Detach this perforated page at the start of the examination.

Foundation Physics Mechanics Formulae

$$moment of force = Fd$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$S = \frac{1}{2}(u+v)t$$

for a spring, $F = k\Delta l$

energy stored in a spring $= \frac{1}{2}F\Delta l = \frac{1}{2}k(\Delta l)^2$

$$T = \frac{1}{f}$$

Foundation Physics Electricity Formulae

$$I = nAvq$$

terminal p.d. = E - Ir

in series circuit, $R = R_1 + R_2 + R_3 + \dots$

in parallel circuit, $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

output voltage across $R_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times \text{input voltage}$

Waves and Nuclear Physics Formulae

fringe spacing =
$$\frac{\lambda D}{d}$$

single slit diffraction minimum $\sin \theta = \frac{\lambda}{h}$

diffraction grating $n\lambda = d\sin\theta$

Doppler shift
$$\frac{\Delta f}{f} = \frac{v}{c}$$
 for $v << c$

Hubble law v = Hd

radioactive decay $A = \lambda N$

Properties of Quarks

Type of quark	Charge	Baryon number
up u	$+\frac{2}{3}e$	$+\frac{1}{3}$
down d	$-\frac{1}{3}e$	$+\frac{1}{3}$
ū	$-\frac{2}{3}e$	$-\frac{1}{3}$
\overline{d}	$+\frac{1}{3}e$	$-\frac{1}{3}$

Lepton Numbers

D = -41 - 1-	Lepton number L						
Particle	L_e	L_{μ}	$L_{ au}$				
e -	1						
$e^{\scriptscriptstyle +}$	-1						
$egin{array}{c} v_e \ \overline{v}_e \ \mu^- \ \mu^+ \end{array}$	1						
$\overline{v}_{\!_{e}}$	-1						
μ-		1					
$\mu^{\scriptscriptstyle +}$		-1					
$rac{v_{\mu}}{\overline{v}_{\mu}}$		1					
$\overline{v}_{\!\mu}$		-1					
τ -			1				
$ au^{+}$			-1				
$v_{ au}$			1				
$\overline{v}_{ au}$			-1				

Geometrical and Trigonometrical Relationships

circumference of circle = $2\pi r$

area of a circle = πr^2

surface area of sphere = $4\pi r^2$

volume of sphere $=\frac{4}{3}\pi r^3$

$$\sin \theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

$$c^2 = a^2 + b^2$$

Detach this perforated page at the start of the examination.

Circular Motion and Oscillations

$$v = r\omega$$

$$a = -(2\pi f)^{2}x$$

$$x = A\cos 2\pi ft$$

$$\max a = (2\pi f)^{2}A$$

$$\max v = 2\pi fA$$
for a mass-spring system, $T = 2\pi \int \frac{m}{k}$
for a simple pendulum, $T = 2\pi \int \frac{l}{g}$

Fields and their Applications

uniform electric field strength,
$$E = \frac{V}{d} = \frac{F}{Q}$$
 for a radial field, $E = \frac{kQ}{r^2}$
$$k = \frac{1}{4\pi\varepsilon_0}$$

$$g = \frac{F}{m}$$

$$g = \frac{GM}{r^2}$$
 for point masses, $\Delta E_{\rm p} = GM_1M_2\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$ for point charges, $\Delta E_{\rm p} = kQ_1Q_2\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$ for a straight wire, $F = BII$ for a moving charge, $F = BQv$
$$\phi = BA$$
 induced emf $= \frac{\Delta(N\phi)}{t}$
$$E = mc^2$$

Temperature and Molecular Kinetic Theory

$$T/K = \frac{(pV)_T}{(pV)_{tr}} \times 273.16$$

$$pV = \frac{1}{3} Nm \langle c^2 \rangle$$
energy of a molecule = $\frac{3}{2} kT$

Heating and Working

$$\Delta U = Q + W$$

$$Q = mc\Delta\theta$$

$$Q = ml$$

$$P = Fv$$

$$efficiency = \frac{\text{useful power output}}{\text{power input}}$$

$$\text{work done on gas} = p\Delta V$$

$$\text{work done on a solid} = \frac{1}{2}F\Delta l$$

$$\text{stress} = \frac{F}{A}$$

$$\text{strain} = \frac{\Delta l}{l}$$

$$\text{Young modulus} = \frac{\text{stress}}{\text{strain}}$$

Capacitance and Exponential Change

in series,
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

in parallel, $C = C_1 + C_2$
energy stored by capacitor $= \frac{1}{2}QV$
parallel plate capacitance, $C = \frac{\varepsilon_0 \varepsilon_r A}{d}$
 $Q = Q_0 e^{-t/RC}$
time constant $= RC$
time to halve $= 0.69 RC$
 $N = N_0 e^{-\lambda t}$
 $A = A_0 e^{-\lambda t}$
half-life, $t_{\frac{1}{2}} = \frac{0.69}{\lambda}$

Momentum and Quantum Phenomena

$$Ft = \Delta(mv)$$

$$E = hf$$

$$hf = \Phi + E_{\text{k(max)}}$$

$$hf = E_2 - E_1$$

$$\lambda = \frac{h}{mv}$$

	(i)	The turntable has a radius of $0.13\mathrm{m}$ and the teacher wishes the time taken for one cycle of the motion to be $2.2\mathrm{s}$. The mass of the sphere is $0.050\mathrm{kg}$.
		Calculate the magnitude of the horizontal force acting on the sphere.
		(2 marks)
	(ii)	State the direction in which the force acts.
		(1 mark)
(c)	abov	re 1b shows how the demonstration might be extended. A simple pendulum is mounted the turntable so that the shadows of the sphere and the pendulum bob can be seen to move similar way and with the same period.
	(i)	Calculate the required length of the pendulum.
		acceleration due to gravity = $9.8 \mathrm{m \ s^{-2}}$
		(1 mark)
	(ii)	Calculate the maximum acceleration of the pendulum bob when its motion has an amplitude of $0.13\mathrm{m}$.
		(2 marks)

QUESTION 1 CONTINUES ON THE NEXT PAGE

Turn over ▶

- (d) **Figure 2** includes a graph of displacement against time for the pendulum. Sketch, on the axes below, graphs of
 - (i) acceleration against time for the bob, and
 - (ii) kinetic energy against time for the bob.

Figure 2

(4 marks)

Total for this question: 9 marks

	•••••	
	•••••	(2 mc
(b)	A hos	se pipe is used to water a garden. The supply delivers water at a rate of 0.31kg s^{-1} to e which has a cross-sectional area of $7.3 \times 10^{-5} \text{m}^2$.
	(i)	Show that water leaves the nozzle at a speed of about $4 \mathrm{m s^{-1}}$. density of water = $1000 \mathrm{kg m^{-3}}$
		(2 mc
	(ii)	Before it leaves the hose, the water has a speed of 0.68 m s ⁻¹ . Calculate the force or hose.
		(3 mc
	(iii)	The water from the hose is sprayed onto a brick wall the base of which is firmly embed in the ground. Explain why there is no overall effect on the rotation of the Earth.

Total for this question: 15 marks

3 Figure 3 shows a capacitor microphone and its associated electrical circuit.

Figure 3

The microphone consists of a thin metal plate placed close to a rigid metal disc. Air-pressure variations cause the plate to move towards and away from the fixed disc when a sound wave is incident on the microphone.

(a) The metal plate has a radius of $2.5\,\mathrm{mm}$ and is $4.5\,\mu\mathrm{m}$ from the rigid disc. Show that the capacitance of the microphone is about $40\,\mathrm{pF}$.

permittivity of free space =
$$8.9 \times 10^{-12} \text{ F m}^{-1}$$

relative permittivity of air = 1.0

(2 marks)

		ks are avail							
	•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	
•••••	•••••			•••••			• • • • • • • • • • • • • • • • • • • •		
			•••••	••••••	••••••			•••••	
			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			• • • • • • • • • • • • • • • • • • • •	•••••	••••••			••••••	
	•••••				• • • • • • • • • • • • • • • • • • • •				
In or	dor to raprod	uaa saund d	a a uratalı	the tim	a aanstar	ut due to th	a miarant		(6 ma
the to	der to reprod otal circuit re ulate the max	sistance mi	ast be les	s than 1:	5 μs.		_	none capa	,
the to	otal circuit re	sistance mi	ast be les	s than 1:	5 μs.		_	none capa	,
the to Calco	otal circuit re	sistance mu imum valu	ust be lesse that the	s than 1: e circuit	5 μs. resistance	e can have	ease, chan		(2 ma
A sor	und wave can 20 pF. The p	sistance mu cimum valu uses the dis	tance bet	s than 1: e circuit	5 μs. resistance sc and pla e capacito	e can have	ease, chan		(2 ma
the to Calco	otal circuit re ulate the max und wave can	sistance mu cimum valu uses the dis	tance bet	s than 1: e circuit	5 μs. resistance sc and pla e capacito	e can have	ease, chan		(2 ma
A sor by 0.	und wave can 20 pF. The p	sistance mu cimum valu uses the dis	tance bet	s than 1: e circuit	5 μs. resistance sc and pla e capacito	e can have	ease, chan		(2 ma
A sor	und wave can 20 pF. The p	sistance mu cimum valu uses the dis potential dif	tance bet	s than 1: e circuit	5 μs. resistance sc and pla e capacito	e can have	ease, chan		(2 ma
A sor by 0.	und wave can 20 pF. The p	sistance mu cimum valu uses the dis potential dif	tance bet	s than 1: e circuit	5 μs. resistance sc and pla e capacito	e can have	ease, chan		(2 ma
A sor by 0.	und wave can 20 pF. The p	sistance mu cimum valu uses the dis potential dif	tance bet	s than 1: e circuit	5 μs. resistance sc and pla e capacito	e can have	ease, chan		(2 ma

QUESTION 3 CONTINUES ON THE NEXT PAGE

Turn over ▶

(ii)	Calculate the change in electrical energy stored by the capacitor microphone.
	(2 marks)
	(2 murks)
(:::)	State and explain whether energy is being sympled by or to the newer symply whilst the
(iii)	State and explain whether energy is being supplied by or to the power supply whilst the
	charge in part (d)(i) is flowing.
	(1 mark)

		Total for this question: 16 marks
4	Figure 4 shows a simplified energy leve	el diagram for the constituents of a helium-neon gas laser.
	level A ———	
		not to scale
	0 J ————	neon 0 J ground state
		Figure 4
		clear

QUESTION 4 CONTINUES ON THE NEXT PAGE

(7 marks)

(b)	Show that the frequency of the light emitted by the laser represented in Figure 4 is about 5×10^{14} Hz.
	Planck constant = $6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$

(2 marks)

- (c) This light is shone on to a specimen of potassium and a photoelectron is emitted from the metal.
 - (i) Calculate the maximum speed of emission that this photoelectron can have.

work function of potassium =
$$2.90 \times 10^{-19}$$
 J
mass of electron = 9.11×10^{-31} kg

(3 marks)

(ii) Calculate the corresponding de Broglie wavelength for this electron.

(2 marks)

de Broglie wavelength you calculated in part (c)(ii) could be used to demonstrate electron diffraction using a thin carbon sheet.
(2 marks)

(iii) The atomic diameter of carbon is about 140 pm. Discuss whether electrons of the

Total for this question: 7 marks

5	(a)	Explain the meaning of the statement the specific heat capacity of ice is $2100 J \text{kg}^{-1} \text{K}^{-1}$.

(2 marks)

- (b) An engineer is designing an ice-making machine. Water will enter the device at 18°C and the ice cubes are to be cooled to -5°C before release.
 - (i) Show that about $0.4 \, \text{MJ}$ of energy must be removed from $1.0 \, \text{kg}$ of water at 18°C to change it into ice at -5°C .

Set out the stages in your answer clearly.

$$\begin{array}{lll} \text{specific heat capacity of water} &= 4.2 \times 10^3 \ \text{J kg}^{-1} \ \text{K}^{-1} \\ \text{specific heat capacity of ice} &= 2.1 \times 10^3 \ \text{J kg}^{-1} \ \text{K}^{-1} \\ \text{specific latent heat of fusion of ice} &= 3.3 \times 10^5 \ \text{J kg}^{-1} \end{array}$$

(3 marks)

(ii) The design brief requires that 1.5 kg of water is frozen in 300 s. Calculate the rate at which energy must be removed by the machine.

(2 marks)

Total for this question: 8 marks

6 Figure 5 shows a p-V graph that you are to use to illustrate the process of a gas undergoing two changes.

In its initial state, the gas has a pressure of 50 kPa and a volume of 1.5 m³; this is plotted on the graph. First, the gas undergoes an isothermal change from an initial volume of 1.5 m³ to 0.85 m³ followed by a compression at constant pressure to a volume of 0.35 m³.

Figure 5

(a) Show that the final pressure of the gas is about 90 kPa.

(2 marks)

(b) Complete the graph in **Figure 5** to show both changes.

(2 marks)

(c) ((i)	Use your graph to estimate the work done during the whole process.	
			(3 marks)
(i	ii)	State and explain whether the work in part (c)(i) is done <i>on</i> or <i>by</i> the gas.	
			(1 mark)

 $\frac{1}{8}$

TURN OVER FOR THE NEXT QUESTION

Total for this question: 8 marks

(a)	State two assumptions of the kinetic theory of gases.
	assumption 1
	assumption 2
	(2 marks)
(b)	Show that the mean kinetic energy of one molecule of an ideal gas at a temperature of 21°C is about 6×10^{-21} J. Boltzmann constant = 1.4×10^{-23} J K ⁻¹
	(2 marks,
(c)	
(c)	Explain, in terms of the zeroth law of thermodynamics, why the nitrogen and oxygen molecules in a sample of air have the same mean kinetic energy.
(c)	Explain, in terms of the zeroth law of thermodynamics, why the nitrogen and oxygen molecules in a sample of air have the same mean kinetic energy.
(c)	Explain, in terms of the zeroth law of thermodynamics, why the nitrogen and oxygen molecules in a sample of air have the same mean kinetic energy.

(d) Assume that the air behaves as an ideal gas and that the mass of a nitrogen molecule is 5×10^{-26} kg. Estimate the mean square speed of a nitrogen molecule at 21°C.

(2 marks)

7