Surname				Ot	her Names			
Centre Nur	nber				Candidate	Number		
Candidate	Signat	ure						

Leave blank

General Certificate of Education January 2005 Advanced Subsidiary Examination

PHYSICS (SPECIFICATION B) Unit 1 Foundation Physics

PHB1

Wednesday 12 January 2005 Morning Session

In addition to this paper you will require:

- · a calculator;
- a pencil and a ruler.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A and Section B in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want marked.
- All working must be shown, otherwise you may lose marks.
- A *Formulae Sheet* is provided on page 3. Detach this perforated page at the start of the examination.

Information

- The maximum mark for this paper is 75.
- Mark allocations are shown in brackets.
- You are expected to use a calculator where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

Advice

• You are advised to spend about 30 minutes on **Section A** and about 1 hour on **Section B**.

	For Examiner's Use			
Number	Mark	Numl	oer	Mark
Α				
5				
6				
7				
8				
Total (Column	1)	—		
Total (Column	2)	~		
TOTAL				
Examine	r's Initials			

SECTION A

Answer all questions in this section.

There are 24 marks in this section.

- 1 A car accelerates uniformly from rest to a speed of 100 km h⁻¹ in 5.8 s.
 - (a) Calculate the magnitude of the acceleration of the car in m s⁻².

Acceleration =
$$...$$
 m s⁻²
(3 marks)

(b) Calculate the distance travelled by the car while accelerating.

2 Figure 1 shows a skier being pulled by rope up a hill of incline 12° at a steady speed. The total mass of the skier is 85 kg. Two of the forces acting on the skier are already shown.

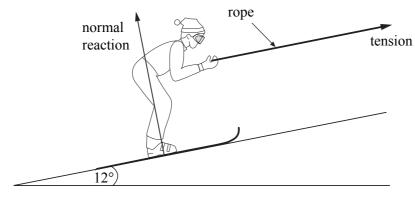


Figure 1

- (a) Mark with arrows and label on **Figure 1** a further two forces that are acting on the skier.
 - (2 marks)

(b) Calculate the magnitude of the normal reaction on the skier. gravitational field strength, $g = 9.8 \,\mathrm{N \, kg^{-1}}$

Normal reaction =(3 marks)

Detach this perforated page at the start of the examination.

Foundation Physics Mechanics Formulae

moment of force =
$$Fd$$
 fringe spacing = $\frac{\lambda D}{d}$
 $v = u + at$ single slit diffraction minimum $\sin \theta = \frac{\lambda}{b}$
 $s = ut + \frac{1}{2}at^2$ diffraction grating $n\lambda = d\sin \theta$
 $v^2 = u^2 + 2as$ Doppler shift $\frac{\Delta f}{f} = \frac{v}{c}$ for $v << c$
 $s = \frac{1}{2}(u + v)t$ Hubble law $v = Hd$

energy stored in a spring $= \frac{1}{2}F\Delta l = \frac{1}{2}k(\Delta l)^2$ $T = \frac{1}{f}$

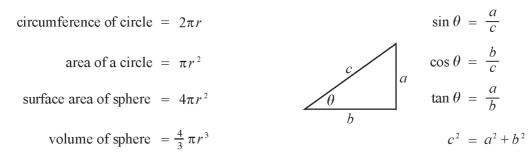
for a spring, $F = k\Delta l$

Foundation Physics Electricity Formulae

$$I = nAvq$$
 terminal p.d. = $E - Ir$ in series circuit, $R = R_1 + R_2 + R_3 + \dots$ in parallel circuit, $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$ output voltage across $R_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times \text{input voltage}$

Properties of Quarks

radioactive decay $A = \lambda N$

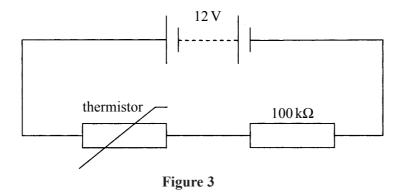

Waves and Nuclear Physics Formulae

Type of quark	Charge	Baryon number
up u	$+\frac{2}{3}e$	$+\frac{1}{3}$
down d	$-\frac{1}{3}e$	$+\frac{1}{3}$
ū	$-\frac{2}{3}e$	$-\frac{1}{3}$
\overline{d}	$+\frac{1}{3}e$	$-\frac{1}{3}$

Lepton Numbers

Doutiele	Lepton number L					
Particle	L_e	L_{μ}	$L_{ au}$			
e -	1					
e +	-1					
$egin{array}{c} v_e \ \overline{v}_e \ \mu^- \ \mu^+ \end{array}$	1					
\overline{v}_{e}	-1					
μ-		1				
μ+		-1				
$v_{\!\mu}$		1				
$rac{v_{\mu}}{\overline{v}_{\!\mu}}$		-1				
τ -			1			
τ +			-1			
$\frac{v_{ au}}{\overline{v}_{ au}}$			1			
$\overline{v}_{ au}$			-1			

Geometrical and Trigonometrical Relationships



NO QUESTIONS APPEAR ON THIS PAGE

(c)	Explain wh	ny the resultant force on the skier must be zero.	
		(1 mc	 ark)
Figuı	re 2 shows th	he resistance against temperature characteristic for a thermistor.	
		350	
resis	stance/kΩ	300	
		250	
		200	
		150	
		100	
		50	
		-50 -40 -30 -20 -10 0 10 20 temperature/°C	
		Figure 2	
(a)		e range of temperatures for which the resistance change of the thermistor is mochanges in temperature.	nost
		(1 mc	ark)
		Temperature range from°C to	°C
(b)		terms of charge carriers, why the resistance of the thermistor falls as the temperat	ture
	rises.		
			•••••
		(3 ma	 rks)

3

Figure 3 shows a circuit in which the thermistor is connected in series with a $100 \,\mathrm{k}\Omega$ fixed resistor and a 12 V battery of negligible internal resistance.

Calculate the potential difference across the thermistor at a temperature of -30° C.

Potential difference =(4 marks)

4 Figure 4 shows a spring loaded with a mass of 0.15 kg. When the mass is displaced vertically it oscillates up and down. A and C show the extreme positions of the mass and B is its equilibrium position.

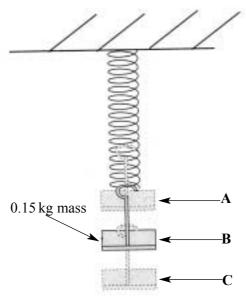


Figure 4

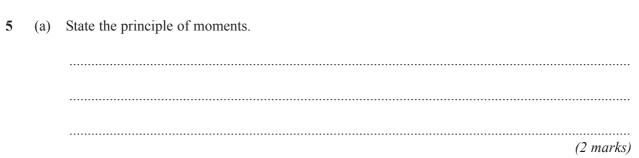
(a) The $0.15\,\mathrm{kg}$ mass extends the spring by $0.040\,\mathrm{m}$. Calculate the elastic potential energy stored in the spring when it is extended by this amount. gravitational field strength, $g = 9.8\,\mathrm{N\,kg^{-1}}$

Elastic potential energy =	
	(2 marks)

(b) (i) Mark and label on the diagram the amplitude of the motion.

(1 mark)

position C and then released. cycle.	You should consider the motion to be undamped during the
	(2 mark


Describe the energy changes that occur during one cycle when the mass is pulled down to

SECTION B

Answer all questions in this section.

There are 51 marks in this section.

Total for this question: 8 marks

Figure 5 shows a child standing on a uniform plank, **AB**, which bridges a small stream. The plank has a weight of 178 N and is 5.0 m long. The reactions on the plank at each bank are 429 N and 149 N as shown in **Figure 5**. Each reaction acts vertically.

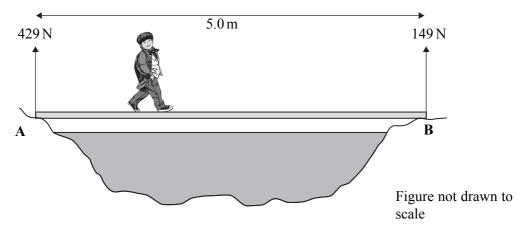


Figure 5

(b) Calculate the weight of the child.

(c) By taking moments about A, calculate the distance of the child from A.

Distance from
$$A = \dots (4 \text{ marks})$$

Total for this question: 15 marks

6	(a)	Define the term electromotive force (emf).	
			(2 marks)

(b) Figure 6 shows very high resistance voltmeter placed across an $8.00\,\Omega$ resistor connected to a cell of emf 1.56 V.

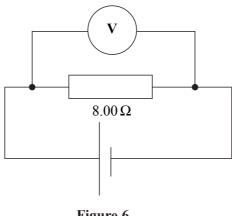


Figure 6

The very high resistance voltmeter registers 1.40 V. Show that the internal resistance of the cell must be about 0.9Ω .

(3 marks)

- (c) A voltmeter, having resistance 24.0 Ω , replaces the very high resistance voltmeter.
 - Calculate the combined resistance of this voltmeter and the $8.00\,\Omega$ resistor connected in parallel.

Combined resistance = Ω (2 marks)

(ii) Calculate the reading on this voltmeter.	
Reading on voltmeter =V (3 marks)	
(iii) Explain why the reading on this voltmeter is different from the reading on the very high resistance voltmeter in part (b).	
(1 mark)	
Each lead connecting the resistor to the cell is made from a single strand of copper wire. Each lead is $0.30\mathrm{m}$ long and has a diameter of $2.0\mathrm{mm}$. Show that the total potential difference across the two leads is negligible when the cell delivers a current of $0.20\mathrm{A}$. resistivity of copper, $\rho = 1.7 \times 10^{-8}\Omega\mathrm{m}$	

(4 marks)

Total for this question: 13 marks

	all island is situated a long way from the mainland. The islanders require an electricity supply. suggested that wind turbine generators could be used together with oil powered generators.
(a)	Explain why such a system of providing islanders with electrical power is seen as being a desirable proposition.
	Two of the 5 marks in this question are available for the quality of your written communication.
	(5 marks)
(b)	Explain the role of the Sun in producing wave energy.
	(3 marks)

(c) **Figure 7** shows a graph of the relationship between the power generated in a wind turbine generator and the wind speed.

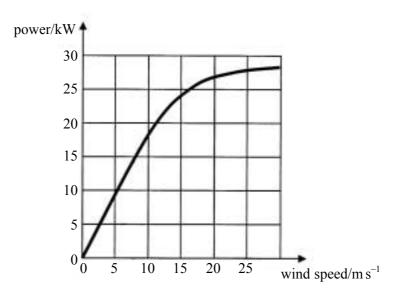


Figure 7

(i) An island has a mean wind speed of 7.5 m s⁻¹. Calculate the maximum energy in MJ that a single wind turbine generator could be expected to supply during the course of one year.

Maximum energy =MJ (3 marks)

Suggest why this is the maximum amount of energy that could be expected.

Total for this question: 15 marks

8	(a)		rticular sensor system is used to sample data at regular intervals. The data are then mitted along metal cables before storage by a computer for future analysis.
		(i)	Explain whether analogue or digital data are transmitted along the metal cable.
			(1 mark)
		(ii)	Explain the benefits of monitoring data with a high sampling rate.
			(1 mark)
		(iii)	Explain why signals need to be boosted when transmitted over long distances using metal cables.
			(3 marks)
		(iv)	The average current carried by the sensor system is 35 mA and the effective sensor resistance is $22k\Omega$. Calculate the energy dissipated in the system in a 24 hour period.
			Energy dissipated =
			(3 marks)

QUESTION 8 CONTINUES ON THE NEXT PAGE

	In an attempt to increase the versatility of the sensor system its dimensions are reduced. Sugan advantage and a drawback of this miniaturisation.
	(2 mc
1	State and explain the use of remote sampling of data in one named situation. You should not clear why this situation is viewed as being <i>remote</i> . Name the actual sensor used and brodescribe the physical changes that occur when it is used.
,	Two of the 5 marks in this question are available for the quality of your written communica

$\left(\begin{array}{c} \\ \hline 15 \end{array}\right)$

END OF QUESTIONS