| Surname | | | | | Ot | her Names | | | | |---------------------|--|-----|--|--|----|-----------|--------|--|--| | Centre Number | | | | | | Candidate | Number | | | | Candidate Signature | | ure | | | | | | | | Leave blank General Certificate of Education January 2004 Advanced Subsidiary Examination # ASSESSMENT and QUALIFICATIONS ALLIANCE # PHYSICS (SPECIFICATION A) PA02 Unit 2 Mechanics and Molecular Kinetic Theory Monday 12 January 2004 Morning Session In addition to this paper you will require: - a calculator; - a pencil and a ruler. Time allowed: 1 hour #### **Instructions** - Use blue or black ink or ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions in the spaces provided. All working must be shown. - Do all rough work in this book. Cross through any work you do not want marked. #### **Information** - The maximum mark for this paper is 50. - Mark allocations are shown in brackets. - The paper carries 30% of the total marks for Physics Advanced Subsidiary and carries 15% of the total marks for Physics Advanced. - A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination. - You are expected to use a calculator where appropriate. - In questions requiring description and explanation you will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate. The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account. | For Examiner's Use | | | | | | | | |---------------------|------------------|--------|------|--|--|--|--| | Number | Mark | Number | Mark | | | | | | 1 | | | | | | | | | 2 | | | | | | | | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | Total
(Column | Total (Column 1) | | | | | | | | Total (Column 2) | | | | | | | | | TOTAL | | | | | | | | | Examiner's Initials | | | | | | | | 0104/PA02 PA02 #### **Data Sheet** - A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper. - This sheet may be useful for answering some of the questions in the examination. - You may wish to detach this sheet before you begin work. #### **Data Sheet** | | Fundamental constants and values | | | | | | | | |---|--|---------------|-------------------------|----------------------------------|--|--|--|--| | | Quantity | Symbol | Value | Units | | | | | | | speed of light in vacuo | c | 3.00×10^{8} | m s ⁻¹ | | | | | | | permeability of free space | μ_0 | $4\pi \times 10^{-7}$ | H m ⁻¹ | | | | | | | permittivity of free space | ϵ_0 | 8.85×10^{-12} | F m ⁻¹ | | | | | | | charge of electron | e | 1.60×10^{-19} | C | | | | | | | the Planck constant | h | 6.63×10^{-34} | J s | | | | | | | gravitational constant | G | 6.67×10^{-11} | $N m^2 kg^{-2}$ | | | | | | | the Avogadro constant | $N_{\rm A}$ | 6.02×10^{23} | mol ⁻¹ | | | | | | | molar gas constant | R | 8.31 | J K ⁻¹ mol | | | | | | | the Boltzmann constant | k | 1.38×10^{-23} | J K ⁻¹ | | | | | | ı | the Stefan constant | σ | 5.67×10^{-8} | W m ⁻² K ⁻ | | | | | | | the Wien constant | α | 2.90×10^{-3} | m K | | | | | | | electron rest mass | $m_{\rm e}$ | 9.11×10^{-31} | kg | | | | | | ı | (equivalent to 5.5×10^{-4} u) | | | | | | | | | ١ | electron charge/mass ratio | $e/m_{\rm e}$ | 1.76×10^{11} | C kg ⁻¹ | | | | | | | proton rest mass | $m_{\rm p}$ | 1.67×10^{-27} | kg | | | | | | ı | (equivalent to 1.00728u) | | _ | | | | | | | ı | proton charge/mass ratio | $e/m_{\rm p}$ | 9.58×10^{7} | C kg ⁻¹ | | | | | | ı | neutron rest mass | $m_{\rm n}$ | 1.67×10^{-27} | kg | | | | | | | (equivalent to 1.00867u) | | | | | | | | | | gravitational field strength | g | 9.81 | N kg ⁻¹ | | | | | | | acceleration due to gravity | g | 9.81 | m s ⁻² | | | | | | | atomic mass unit | u | 1.661×10^{-27} | kg | | | | | | Ì | (1u is equivalent to | - 1 | | | | | | | | ı | 931.3 MeV) | | | | | | | | #### **Fundamental particles** | Class | Name | Symbol | Rest energy | |---------|----------|--------------------|-------------| | | | | /MeV | | photon | photon | γ | 0 | | lepton | neutrino | ν_{e} | 0 | | | | $ u_{\mu}$ | 0 | | | electron | e^{\pm} | 0.510999 | | | muon | μ^{\pm} | 105.659 | | mesons | pion | π^{\pm} | 139.576 | | | | π^0 | 134.972 | | | kaon | K^{\pm} | 493.821 | | | | K^0 | 497.762 | | baryons | proton | p | 938.257 | | | neutron | n | 939.551 | #### **Properties of quarks** | Туре | Charge | Baryon
number | Strangeness | |------|----------------|------------------|-------------| | u | $+\frac{2}{3}$ | $+\frac{1}{3}$ | 0 | | d | $-\frac{1}{3}$ | $+\frac{1}{3}$ | 0 | | S | $-\frac{1}{2}$ | + 1 | _1 | #### **Geometrical equations** $arc\ length = r\theta$ $circumference\ of\ circle=2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ *volume of cylinder* = $\pi r^2 h$ area of sphere = $4\pi r^2$ *volume of sphere* = $\frac{4}{3}\pi r^3$ ## Mechanics and Applied Physics $$v = u + at$$ $$s = \left(\frac{u+v}{2}\right)t$$ $$s = ut + \frac{at^2}{2}$$ $$v^2 = u^2 + 2as$$ $$F = \frac{\Delta(mv)}{\Delta t}$$ $$P = Fv$$ efficiency = $\frac{power\ output}{power\ input}$ $$\omega = \frac{v}{r} = 2\pi f$$ $$a = \frac{v^2}{r} = r\omega^2$$ $$I = \sum mr^2$$ $$E_k = \frac{1}{2}I\omega^2$$ $$\omega_2 = \omega_1 + \alpha t$$ $$\theta = \omega_1 t + \frac{1}{2}\alpha t^2$$ $$\omega_2^2 = \omega_1^2 + 2\alpha\theta$$ $$T = I\alpha$$ angular momentum = $I\omega$ $W = T\theta$ $P = T\omega$ angular impulse = change of $angular\ momentum = Tt$ $\Delta Q = \Delta U + \Delta W$ $\Delta W = p\Delta V$ $pV^{\gamma} = \text{constant}$ work done per cycle = area of loop *input power = calorific value* × *fuel flow rate* indicated power as (area of p - V $loop) \times (no. \ of \ cycles/s) \times$ (no. of cylinders) *friction power = indicated* power – brake power efficiency = $$\frac{W}{Q_{\text{in}}} = \frac{Q_{\text{in}} - Q_{\text{out}}}{Q_{\text{in}}}$$ $E = \frac{1}{2} QV$ maximum possible $$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$$ #### Fields, Waves, Quantum Phenomena $$g = \frac{F}{m}$$ $$g = -\frac{GM}{r^2}$$ $$g = -\frac{\Delta V}{\Delta x}$$ $$V = -\frac{GM}{r}$$ $$a = -(2\pi f)^2 x$$ $$v = \pm 2\pi f \sqrt{A^2 - x^2}$$ $$x = A \cos 2\pi f t$$ $$T = 2\pi \sqrt{\frac{I}{g}}$$ $$\lambda = \frac{\omega s}{D}$$ $$d \sin \theta = n\lambda$$ $$\theta \approx \frac{\lambda}{D}$$ $$1^{n_2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$ $$1^{n_2} = \frac{n_2}{n_1}$$ $$\sin \theta_c = \frac{1}{n}$$ $$E = hf$$ $$hf = \phi + E_k$$ $$hf = E_1 - E_2$$ $$\lambda = \frac{h}{p} = \frac{h}{mv}$$ #### **Electricity** F = BIl F = BQv $\Phi = BA$ $Q = Q_0 e^{-t/RC}$ $$\epsilon = \frac{E}{Q}$$ $$\epsilon = I(R+r)$$ $$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$ $$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$$ $$P = I^2 R$$ $$E = \frac{F}{Q} = \frac{V}{d}$$ $$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$ Turn over #### **Data Sheet** magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$ $$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$ $$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$ ## Mechanical and Thermal Properties the Young modulus = $$\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$$ energy stored = $\frac{1}{2}$ Fe $$\Delta Q = mc \Delta \theta$$ $$\Delta Q = ml$$ $$pV = \frac{1}{3} Nm\overline{c^2}$$ $$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$ ## **Nuclear Physics and Turning Points in Physics** $$force = \frac{eV_p}{d}$$ $$force = Bev$$ radius of curvature = $$\frac{mv}{Be}$$ $$\frac{eV}{d} = mg$$ $work\ done = eV$ $$F = 6\pi \eta r v$$ $$I = k \frac{I_0}{x^2}$$ $$\frac{\Delta N}{\Delta t} = -\lambda N$$ $$\lambda = \frac{h}{\sqrt{2meV}}$$ $$N = N_0 e^{-\lambda t}$$ $$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$ $$R = r_0 A^{\frac{1}{3}}$$ $$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$ $$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$ $$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$ # **Astrophysics and Medical Physics** Body Mass/kg Mean radius/m Sun 2.00×10^{30} 7.00×10^{8} Earth 6.00×10^{24} 6.40×10^{6} 1 astronomical unit = 1.50×10^{11} m 1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$ 1 light year = 9.45×10^{15} m Hubble constant (H) = 65 km s⁻¹ Mpc⁻¹ angle subtended by image at eye angle subtended by object at unaided eye $$M = \frac{f_{\rm o}}{f_{\rm e}}$$ $$m - M = 5 \log \frac{d}{10}$$ $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$ v = Hd $P = \sigma A T^4$ $$\frac{\Delta f}{f} = \frac{v}{c}$$ $$\frac{\Delta \lambda}{\lambda} = -\frac{\nu}{c}$$ $$R_{\rm s} \approx \frac{2GM}{c^2}$$ #### **Medical Physics** $$power = \frac{1}{f}$$ $$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$ and $m = \frac{v}{u}$ intensity level = $10 \log \frac{I}{I_0}$ $$I = I_0 e^{-\mu x}$$ $$\mu_{\rm m} = \frac{\mu}{\rho}$$ #### **Electronics** Resistors Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater $$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$ $$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$ $$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$ $$X_{\rm C} = \frac{1}{2\pi fC}$$ #### **Alternating Currents** $$f = \frac{1}{T}$$ ### Operational amplifier $$G = \frac{V_{\text{out}}}{V_{\text{in}}}$$ voltage gain $$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$ inverting $$G = 1 + \frac{R_{\rm f}}{R_1}$$ non-inverting $$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$ summing ## Answer all questions in the spaces povided. | 1 | (a) | (i) | State what is meant by a scalar quantity. | |---|-----|---------|---| | | | | | | | | | | | | | · · · · | | | | | (ii) | State two examples of scalar quantities. | | | | | example 1: | | | | | example 2: | | | | | (3 marks) | | | (b) | | bject is acted upon by two forces at right angles to each other. One of the forces has a litude of 5.0 N and the resultant force produced on the object is 9.5 N. | | | | (i) | the magnitude of the other force, | (ii) | the angle between the resultant force and the 5.0 N force. | | | | | | | | | | (4 marks) | ## TURN OVER FOR THE NEXT QUESTION | 2 | A cor
level | | resultant horizontal force of $1.8 \times 10^3 N$ acts on a car of mass $900 kg$, initially at rest on a | |---|----------------|-------|--| | | (a) | Calcu | ılate | | | | (i) | the acceleration of the car, | | | | (ii) | the speed of the car after 8.0 s, | | | | (iii) | the momentum of the car after 8.0 s, | | | | (iv) | the distance travelled by the car in the first 8.0 s of its motion, | | | | (v) | the work done by the resultant horizontal force during the first 8.0 s. | | | | | (9 marks) | (b) On the axes below sketch the graphs for speed, v, and distance travelled, s, against time, t, for the first 8.0 s of the car's motion. (2 marks) (c) In practice the resultant force on the car changes with time. Air resistance is one factor that affects the resultant force acting on the vehicle. You may be awarded marks for the quality of written communication in your answer. (ii) Suggest, with a reason, how the resultant force on the car changes as its speed increases. (iii) Explain, using Newton's laws of motion, why the vehicle has a maximum speed. (5 marks) TURN OVER FOR THE NEXT QUESTION | 3 | (a) | The a | air in a room of volume 27.0 m ³ is at a temperature of 22 °C and a pressure of 105 kPa. | |---|-----|------------|---| | | | Calcu | ulate | | | | (i) | the temperature, in K, of the air, | | | | (ii) | the number of moles of air in the room, | | | | | | | | | (iii) | the number of gas molecules in the room. | | | | | (5 marks) | | | (b) | The to the | temperature of an ideal gas in a sealed container falls. State, with a reason, what happens | | | | (i) | mean square speed of the gas molecules, | | | | | | | | | (ii) | pressure of the gas. | (4 marks) | | (a) | State | the principle of moments. | |-----|-------|--| | | | (3 marks) | | (b) | (i) | Draw a labelled diagram of the apparatus you would use to verify the principle of moments. | | | | | | | | | | | | | | | (ii) | Describe the procedure that would be used and state what measurements are taken. | | | | You may be awarded marks for the quality of written communication in your answer. | QUESTION 4 CONTINUES ON THE NEXT PAGE | (iii) | Explain how the results would be used to verify the principle of moments. | | | | | | | | |-------|---|--|--|--|--|--|--|--| (7 marks) | | | | | | | | | | (/ marks) | | | | | | | | | 5 | | | nd its rider have a total mass of 95 kg. The bicycle is travelling along a horizontal road at peed of $8.0 \mathrm{ms^{-1}}$. | |---|-----|-----------------|--| | | (a) | Calcu | alate the kinetic energy of the bicycle and rider. | | | | | | | | | | (2 marks) | | | (b) | kineti
brake | brakes are applied until the bicycle and rider come to rest. During braking, 60% of the bic energy of the bicycle and rider is converted to thermal energy in the brake blocks. The blocks have a total mass of 0.12kg and the material from which they are made has a fic heat capacity of $1200 \text{J kg}^{-1} \text{K}^{-1}$. | | | | (i) | Calculate the maximum rise in temperature of the brake blocks. | | | | | | | | | | | | | | (ii) | State an assumption you have made in part (b)(i). | | | | | | | | | | (4 marks) | | | | | QUALITY OF WRITTEN COMMUNICATION (2 marks) | END OF QUESTIONS