| Surname | | | | | Othe | er Names | | | | |---------------------|--|--|--|--|------|----------|------------|--|--| | Centre Number | | | | | | Candid | ate Number | | | | Candidate Signature | | | | | | | | | | General Certificate of Education June 2003 Advanced Subsidiary Examination **PA01** # PHYSICS (SPECIFICATION A) Unit 1 Particles, Radiation and Quantum Phenomena Friday 6 June 2003 Afternoon Session ### In addition to this paper you will require: - a calculator; - a pencil and a ruler. Time allowed: 1 hour ### **Instructions** - Use blue or black ink or ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions in the spaces provided. All working must be shown. - Do all rough work in this book. Cross through any work you do not want marked. #### **Information** - The maximum mark for this paper is 50. - Mark allocations are shown in brackets. - The paper carries 30% of the total marks for Physics Advanced Subsidiary and carries 15% of the total marks for Physics Advanced. - A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination. - You are expected to use a calculator where appropriate. - In questions requiring description and explanation you will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate. The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account. | | For Examiner's Use | | | | | | | | |------------------|--------------------|-------------|------|--|--|--|--|--| | Number | Mark | Number | Mark | | | | | | | 1 | | | | | | | | | | 2 | | | | | | | | | | 3 | | | | | | | | | | 4 | | | | | | | | | | 5 | | | | | | | | | | 6 | | | | | | | | | | 7 | Total
(Column | 1) | > | | | | | | | | Total
(Column | 2) | - | | | | | | | | TOTAL | | | | | | | | | | Examine | r's Initials | | | | | | | | Copyright © 2003 AQA and its licensors. All rights reserved. ## **Data Sheet** - A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper. - This sheet may be useful for answering some of the questions in the examination. - You may wish to detach this sheet before you begin work. | Fundamental constants | and valu | ies | | |--|---------------|-------------------------|---| | Quantity | Symbol | Value | Units | | speed of light in vacuo | c | 3.00×10^{8} | $m s^{-1}$ | | permeability of free space | μ_0 | $4\pi \times 10^{-7}$ | H m ⁻¹ | | permittivity of free space | ϵ_0 | 8.85×10^{-12} | F m ⁻¹ | | charge of electron | e | 1.60×10^{-19} | C | | the Planck constant | h | 6.63×10^{-34} | Js | | gravitational constant | G | 6.67×10^{-11} | $N m^2 kg^{-2}$ | | the Avogadro constant | $N_{\rm A}$ | 6.02×10^{23} | mol ⁻¹ | | molar gas constant | R | 8.31 | J K ⁻¹ mol | | the Boltzmann constant | k | 1.38×10^{-23} | J K ⁻¹ | | the Stefan constant | σ | 5.67×10^{-8} | W m ⁻² K ⁻⁴ | | the Wien constant | α | 2.90×10^{-3} | m K | | electron rest mass | $m_{\rm e}$ | 9.11×10^{-31} | kg | | (equivalent to 5.5×10^{-4} u) | | | | | electron charge/mass ratio | $e/m_{\rm e}$ | 1.76×10^{11} | C kg ⁻¹ | | proton rest mass | $m_{ m p}$ | 1.67×10^{-27} | kg | | (equivalent to 1.00728u) | | ~ | | | proton charge/mass ratio | $e/m_{\rm p}$ | 9.58×10^{7} | C kg ⁻¹ | | neutron rest mass | $m_{\rm n}$ | 1.67×10^{-27} | kg | | (equivalent to 1.00867u) | | | 1 | | gravitational field strength | g | 9.81 | N kg ⁻¹
m s ⁻² | | acceleration due to gravity | g | 9.81 | | | atomic mass unit | u | 1.661×10^{-27} | kg | | (1u is equivalent to | | | | | 931.3 MeV) | | | | ### **Fundamental particles** | Class | Name | Symbol | Rest energy | |---------|----------|--------------------|-------------| | | | | /MeV | | photon | photon | γ | 0 | | lepton | neutrino | $ u_{\rm e}$ | 0 | | | | $ u_{\mu}$ | 0 | | | electron | e^{\pm} | 0.510999 | | | muon | μ^{\pm} | 105.659 | | mesons | pion | π^{\pm} | 139.576 | | | | π^0 | 134.972 | | | kaon | \mathbf{K}^{\pm} | 493.821 | | | | K^0 | 497.762 | | baryons | proton | p | 938.257 | | | neutron | n | 939.551 | ### Properties of quarks | Туре | Charge | Baryon
number | Strangeness | |------|----------------|------------------|-------------| | u | $+\frac{2}{3}$ | $+\frac{1}{3}$ | 0 | | d | $-\frac{1}{3}$ | $+\frac{1}{3}$ | 0 | | S | $-\frac{1}{3}$ | $+\frac{1}{3}$ | -1 | ### **Geometrical equations** $arc\ length = r\theta$ $circumference\ of\ circle = 2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ *volume of cylinder* = $\pi r^2 h$ area of sphere = $4\pi r^2$ *volume of sphere* = $\frac{4}{3} \pi r^3$ ## Mechanics and Applied **Physics** Mechanics and Applied Physics $$v = u + at$$ $$s = \left(\frac{u+v}{2}\right)t$$ $$s = ut + \frac{at^2}{2}$$ $$v^2 = u^2 + 2as$$ $$4 \quad F = \frac{\Delta(mv)}{\Delta t}$$ $$P = Fv$$ $$efficiency = \frac{power \ output}{power \ input}$$ $$\omega = \frac{v}{r} = 2\pi f$$ $$a = \frac{v^2}{r} = r\omega^2$$ $$I = \sum mr^2$$ $$E_k = \frac{1}{2}I\omega^2$$ $$\omega_2 = \omega_1 + at$$ $$\omega_2 = \omega_1 + \alpha t$$ $$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$$ $$\omega_2^2 = \omega_1^2 + 2\alpha \theta$$ $$\omega_2 = \omega_1 + 2\omega_0$$ $$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$$ $$T = I\alpha$$ $$\begin{aligned} & angular \ momentum = I\omega \\ & W = T\theta \\ & P = T\omega \end{aligned}$$ angular impulse = change of $angular\ momentum = Tt$ $\Delta Q = \Delta U + \Delta W$ $\Delta W = p\Delta V$ $pV^{\gamma} = \text{constant}$ work done per cycle = area of loop *input power = calorific* value × fuel flow rate indicated power as (area of p - V $loop) \times (no. \ of \ cycles/s) \times$ (no. of cylinders) friction power = indicated power – brake power $$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$$ maximum possible $$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$$ ### Fields, Waves, Quantum Phenomena $$g = \frac{F}{m}$$ $$g = -\frac{GM}{r^2}$$ $$g = -\frac{\Delta V}{\Delta x}$$ $$V = -\frac{GM}{r}$$ $$a = -(2\pi f)^2 x$$ $$v = \pm 2\pi f \sqrt{A^2 - x^2}$$ $$x = A \cos 2\pi f t$$ $$T = 2\pi \sqrt{\frac{m}{k}}$$ $$T = 2\pi \sqrt{\frac{l}{g}}$$ $$\lambda = \frac{\omega s}{D}$$ $$d \sin \theta = n\lambda$$ $$\theta \approx \frac{\lambda}{D}$$ $$1^{n_2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$ $$1^{n_2} = \frac{n_2}{n_1}$$ $$\sin \theta_c = \frac{1}{n}$$ $$E = hf$$ $$hf = \phi + E_k$$ $$hf = E_1 - E_2$$ $$\lambda = \frac{h}{p} = \frac{h}{mv}$$ $$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$ ### Electricity $$\epsilon = \frac{E}{Q}$$ $$\epsilon = I(R+r)$$ $$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \cdots$$ $$R_{T} = R_{1} + R_{2} + R_{3} + \cdots$$ $$P = I^{2}R$$ $$E = \frac{F}{Q} = \frac{V}{d}$$ $$E = \frac{1}{4\pi\epsilon_{0}} \frac{Q}{r^{2}}$$ $$E = \frac{1}{2} QV$$ $$F = BII$$ $$F = BQv$$ $$Q = Q_{0}e^{-t/RC}$$ $\Phi = BA$ Turn over magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$ $$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$ $$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$ ## Mechanical and Thermal Properties the Young modulus = $$\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$$ energy stored = $\frac{1}{2}$ Fe $$\Delta Q = mc \ \Delta \theta$$ $$\Delta Q = ml$$ $$pV = \frac{1}{3} Nm\overline{c^2}$$ $$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$ ## **Nuclear Physics and Turning Points in Physics** $$force = \frac{eV_p}{d}$$ $$force = Bev$$ radius of curvature = $$\frac{mv}{Be}$$ $$\frac{eV}{d} = mg$$ $work\ done = eV$ $$F = 6\pi \eta r v$$ $$I = k \frac{I_0}{x^2}$$ $$\frac{\Delta N}{\Delta t} = -\lambda N$$ $$\lambda = \frac{h}{\sqrt{2meV}}$$ $$N = N_0 e^{-\lambda t}$$ $$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$ $$R = r_0 A^{\frac{1}{3}}$$ $$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$ $$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$ $$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$ ## Astrophysics and Medical Physics Body Mass/kg Mean radius/m Sun 2.00×10^{30} Earth 6.00×10^{24} 7.00×10^8 6.40×10^6 1 astronomical unit = 1.50×10^{11} m 1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$ 1 light year = 9.45×10^{15} m Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$ angle subtended by image at eye $M = \frac{}{\text{angle subtended by object at}}$ unaided eye $$M = \frac{f_{\rm o}}{f_{\rm e}}$$ $$m - M = 5 \log \frac{d}{10}$$ $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$ v = Hd $P = \sigma A T^4$ $$\frac{\Delta f}{f} = \frac{v}{c}$$ $$\frac{\Delta\lambda}{\lambda} = -\frac{\nu}{c}$$ $$R_{\rm s} \approx \frac{2GM}{c^2}$$ ## **Medical Physics** $power = \frac{1}{f}$ $$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$ intensity level = $10 \log \frac{I}{I_0}$ $I = I_0 e^{-\mu t}$ $\mu_{\rm m} = \frac{\mu}{\rho}$ ### **Electronics** #### Resistors Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater $$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$ $$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$ $$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$ $$X_{\rm C} = \frac{1}{2\pi fC}$$ ## **Alternating Currents** $$f = \frac{1}{T}$$ ### **Operational amplifier** $$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$ $$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$ inverting $$G = 1 + \frac{R_f}{R_1}$$ non-inverting $$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$ summing ## Answer all questions. | 1 | (a) | A sta | ble atom contains 28 nucleons. | |---|-----|-------|---| | | | Write | e down a possible number of protons, neutrons and electrons contained in the atom. | | | | | protons | | | | | neutrons | | | | | electrons (2 marks) | | | (b) | | nstable <i>isotope</i> of uranium may split into a caesium nucleus, a rubidium nucleus and four ons in the following process. | | | | | ${}^{236}_{92}U \Rightarrow {}^{137}_{55}Cs + {}^{X}_{37}Rb + 4{}^{1}_{0}n$ | | | | (i) | Explain what is meant by isotopes. | | | | | | | | | | | | | | | | | | | (ii) | How many neutrons are there in the 55 Cs nucleus? | | | | | | | | | (iii) | Calculate the ratio $\frac{\text{charge}}{\text{mass}}$, in $C \text{ kg}^{-1}$, for the $^{236}_{92}\text{U}$ nucleus. | | | | | | | | | | | | | | (iv) | Determine the value of X for the rubidium nucleus. | | | | | X = | | | | | (6 marks) | - 2 (a) (i) Underline the particles in the following list that may be affected by the weak interaction. positron neutron photon neutrino positive pion - (ii) Underline the particles in the following list that may be affected by the electromagnetic force. electron antineutrino proton neutral pion negative muon (4 marks) (b) A positive muon may decay in the following way, $$\mu^{\scriptscriptstyle +} \Rightarrow e^{\scriptscriptstyle +} + \nu_e + \overline{\nu}_\mu.$$ (i) Exchange each particle for its corresponding antiparticle and complete the equation to show how a negative muon may decay. $$\mu^{\scriptscriptstyle -} \! \Rightarrow \!$$ (ii) Give **one** difference and **one** similarity between a negative muon and an electron. (c) Complete the Feynman diagram, which represents electron capture, by labelling all the particles involved. (3 marks) | | A fluorescent light tube contains mercury vapour at low pressure. The tube is coated on the inside, an contains two electrodes. | | | | | |-----|---|--|--|--|--| | (a) | Explain why the mercury vapour is at a low pressure. | | | | | | | | | | | | | | (1 mark) | | | | | | (b) | Explain the purpose of the coating on the inside of the tube. | | | | | | | You may be awarded marks for the quality of written communication in your answer. | (3 marks) | | | | | ## TURN OVER FOR THE NEXT QUESTION 3 4 The graph shows how the maximum kinetic energy, E_k , of electrons emitted from the surface of metal A, varies with the frequency, f, of the incident electromagnetic radiation. (a) Explain the meaning of the term threshold frequency. (b) Calculate the work function of metal A, (i) in J, (ii) in eV. (3 marks) | (c) | Metal A is exchanged for metal B. The work function of metal B is half that of metal A. Add a line to the graph opposite to show how the maximum kinetic energy of electrons emitted from metal B varies with frequency. (2 marks) | | |-----|--|--| | (d) | At a fixed frequency of the incident radiation, the emitted electrons are collected and a current is recorded. | | | | State and explain a change that may be made to increase this current. | | | | You may be awarded marks for the quality of written communication in your answer. | (3 marks) | | $\overline{10}$ TURN OVER FOR THE NEXT QUESTION 5 The diagram below shows a liquid droplet placed on a cube of glass. A ray of light from air, incident normally on to the droplet, continues in a straight line and is refracted at the liquid to glass boundary as shown. refractive index of the glass = 1.45 | (a) | Calcu | ulate the speed of light | | |-----|-------|--|------------| | | (i) | in the glass, | | | | | | | | | | | | | | | | | | | (ii) | in the liquid droplet. | (3 marks) | | (b) | Calcu | ulate the refractive index of the liquid. | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | (2 marks) | | (c) | | he diagram opposite, complete the path of the ray showing it emerge from the | glass cube | | | | the air. urther calculations are required. | (2 marks) | 11 | The c | diagran | n shows some of t | he energy leve | ls of the merci | ıry atom. | | | |-------|----------------|---|----------------|------------------|------------------|---------------|-----------| | | energ
(| gy/10 ⁻¹⁹ J
0.00 | | ionisation le | evel | | | | | | 1.92 ———————————————————————————————————— | | | | | | | | -5 | 5.92 ——— | | level B | | | | | | -8 | 3.80 | | level A | | | | | (a) | Expla | | by | | ms may be excit | | | | | (ii) | ionisation. | | | | | | | (b) | Deter
diagr | mine the lowest fam. | requency of en | mitted radiation | n with reference | to the energy | (2 marks) | | | | | | | | | | | | ••••• | | | ••••• | ••••• | ••••• | (2 marks) | | 7 | (a) | Elect | rons behave in two distinct ways. This is referred to as the duality of electrons. | | |---|-----|-------|--|---| | | | (i) | State what is meant by the duality of electrons. | | | | | | | | | | | | | | | | | (ii) | Give one example of each type of behaviour of electrons. | | | | | | | | | | | | | | | | | | (3 marks) | | | | (b) | Calcu | late the speed of electrons that have a de Broglie wavelength of 1.70×10^{-10} m. | | | | | ••••• | (2 marks) | | | | | | | \ | | | | | | | **QUALITY OF WRITTEN COMMUNICATION** (2 marks) END OF QUESTIONS