Surname					Oth	er Names			
Centre Nun	nber					Candid	ate Number		
Candidate Signature		ure							

Leave blank

General Certificate of Education January 2003 Advanced Level Examination

PHYSICS (SPECIFICATION A) PHA9/W Unit 9 Nuclear Instability: Electronics Option

Monday 27 January 2003 Morning Session

In addition to this paper you will require:

- a calculator;
- a pencil and a ruler.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 40.
- Mark allocations are shown in brackets.
- The paper carries 10% of the total marks for Physics Advanced.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- You are expected to use a calculator where appropriate.
- In questions requiring description and explanation you will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate. The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

For Examiner's Use											
Number	Mark	Number	Mark								
1											
2											
3											
4											
Total (Column	1)	→									
Total (Column 2)											
TOTAL											
Examine	r's Initials										

Copyright © 2003 AQA and its licensors. All rights reserved.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

	Fundamental constants and values									
	Quantity	Symbol	Value	Units						
	speed of light in vacuo	c	3.00×10^{8}	$m s^{-1}$						
1	permeability of free space	μ_0	$4\pi \times 10^{-7}$	$H m^{-1}$						
I	permittivity of free space	ϵ_0	8.85×10^{-12}	F m ⁻¹						
I	charge of electron	e	1.60×10^{-19}	C						
I	the Planck constant	h	6.63×10^{-34}	Js						
I	gravitational constant	G	6.67×10^{-11}	$N m^2 kg^{-2}$						
I	the Avogadro constant	$N_{\rm A}$	6.02×10^{23}	mol ⁻¹						
I	molar gas constant	R	8.31	J K ⁻¹ mol						
I	the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹						
-	the Stefan constant	σ	5.67×10^{-8}	W m ⁻² K ⁻						
-	the Wien constant	α	2.90×10^{-3}	m K						
-	electron rest mass	$m_{\rm e}$	9.11×10^{-31}	kg						
	(equivalent to 5.5×10^{-4} u)									
	electron charge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹						
	proton rest mass	$m_{\rm p}$	1.67×10^{-27}	kg						
	(equivalent to 1.00728u)	'								
	proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	C kg ⁻¹						
	neutron rest mass	$m_{\rm n}$	1.67×10^{-27}	kg						
	(equivalent to 1.00867u)			_						
	gravitational field strength	g	9.81	N kg ⁻¹ m s ⁻²						
	acceleration due to gravity	g	9.81	m s ⁻²						
	atomic mass unit	u	1.661×10^{-27}	kg						
	(1u is equivalent to									
	931.3 MeV)									

Fundamental particles

Class	Name	Symbol	Rest energy
			/MeV
photon	photon	γ	0
lepton	neutrino	$ u_{\rm e}$	0
		$ u_{\mu}$	0
	electron	e [±]	0.510999
	muon	μ^{\pm}	105.659
mesons	pion	$\boldsymbol{\pi}^{\pm}$	139.576
		π^0	134.972
	kaon	\mathbf{K}^{\pm}	493.821
		\mathbf{K}^0	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}$	$+\frac{1}{3}$	0
s	$-\frac{1}{3}$	$+\frac{1}{3}$	-1

Geometrical equations

 $arc\ length = r\theta$ $circumference\ of\ circle = 2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ *volume of cylinder* = $\pi r^2 h$ area of sphere = $4\pi r^2$ *volume of sphere* = $\frac{4}{3}\pi r^3$

Mechanics and Applied Physics

$$v = u + at$$

$$s = \left(\frac{u+v}{2}\right)t$$

$$s = ut + \frac{at^2}{2}$$

$$v^2 = u^2 + 2as$$

$$F = \frac{\Delta(mv)}{\Delta t}$$

$$P = Fv$$

$$efficiency = \frac{power output}{power input}$$

$$\omega = \frac{v}{r} = 2\pi f$$

$$a = \frac{v^2}{r} = r\omega^2$$

$$I = \sum mr^2$$

$$E_k = \frac{1}{2}I\omega^2$$

$$\omega_2 = \omega_1 + at$$

$$\theta = \omega_1 t + \frac{1}{2}at^2$$

$$\omega_2^2 = \omega_1^2 + 2a\theta$$

$$\theta = \frac{1}{2}(\omega_1 + \omega_2)t$$

$$T = Ia$$

$$angular momentum = I\omega$$

$$W = T\theta$$

$$P = T\omega$$

$$angular impulse = change of angular momentum = Tt$$

$$\Delta Q = \Delta U + \Delta W$$

$$\Delta W = p\Delta V$$

$$pV^{\gamma} = constant$$

$$work done per cycle = area of loop
$$input power = calorific$$

$$value \times fuel flow rate$$

$$indicated power as (area of p loop) \times (no. of cycles/s) \times (no. of cylinders)$$$$

indicated power as (area of p - V $loop) \times (no. of cycles/s) \times$

friction power = indicated power - brake power

efficiency =
$$\frac{W}{Q_{\text{in}}} = \frac{Q_{\text{in}} - Q_{\text{out}}}{Q_{\text{in}}}$$
 $E = \frac{1}{2}QV$

maximum possible $efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$

Fields, Waves, Quantum Phenomena

$$g = \frac{F}{m}$$

$$g = -\frac{GM}{r^2}$$

$$g = -\frac{\Delta V}{\Delta x}$$

$$V = -\frac{GM}{r}$$

$$a = -(2\pi f)^2 x$$

$$v = \pm 2\pi f \sqrt{A^2 - x^2}$$

$$x = A \cos 2\pi f t$$

$$T = 2\pi \sqrt{\frac{I}{g}}$$

$$\lambda = \frac{\omega s}{D}$$

$$d \sin \theta = n\lambda$$

$$\theta \approx \frac{\lambda}{D}$$

$$\ln^2 = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$

$$\ln^2 = \frac{n_2}{n_1}$$

$$\sin \theta_c = \frac{1}{n}$$

$$E = hf$$

$$hf = \phi + E_k$$

$$hf = E_1 - E_2$$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Electricity

$$\begin{aligned}
&\in \frac{E}{Q} \\
&\in I(R+r) \\
&\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \cdots \\
&R_{T} = R_{1} + R_{2} + R_{3} + \cdots \\
&P = I^{2}R \\
&E = \frac{F}{Q} = \frac{V}{d} \\
&E = \frac{1}{4\pi\varepsilon_{0}} \frac{Q}{r^{2}} \\
&E = \frac{1}{2} QV \\
&F = BII \\
&F = BQv \\
&Q = Q_{0}e^{-t/RC}
\end{aligned}$$

 $\Phi = BA$

Turn over

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$$

energy stored =
$$\frac{1}{2}$$
 Fe

$$\Delta Q = mc \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

$$force = Bev$$

radius of curvature =
$$\frac{mv}{Be}$$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

$$F = 6\pi \eta r v$$

$$I = k \frac{I_0}{x^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

Body Mass/kg Mean radius/m

Sun 2.00×10^{30} 7.00×10^{8} Earth 6.00×10^{24} 6.40×10^{6}

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$

$$M = \frac{f_{\rm o}}{f_{\rm e}}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

v = Hd

 $P = \sigma A T^4$

$$\frac{\Delta f}{f} = \frac{\nu}{c}$$

$$\frac{\Delta \lambda}{1} = -\frac{\nu}{2}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
 and $m = \frac{v}{u}$

intensity level = $10 \log \frac{I}{I_0}$

 $I = I_0 e^{-\mu x}$

 $\mu_{\rm m} = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$

$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_1}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$
 summing

TURN OVER FOR THE FIRST QUESTION

SECTION A NUCLEAR INSTABILITY

Answer all parts of the question.

1	The radioactive isotope of sodium	Na has a half life of 2.6 years.	A particular sample of this isotope
	has an initial activity of 5.5×10^5	Bq (disintegrations per second).	

a	l) Exp	lain	what i	is meant	by 1	the	random	nature	of	rad	ioact	ive	dec	av

You may be awarded marks for the quality of written communication provided in your answer.
(2 marks)

(b) Use the axes to sketch a graph of the activity of the sample of sodium over a period of 6 years.

activity/10⁵ Bq

time/year

(2 marks)

Calc	ulate
(i)	the decay constant, in s ⁻¹ , of $^{22}_{11}$ Na, 1 year = 3.15×10^7 s
(ii)	the number of atoms of ²² ₁₁ Na in the sample initially,
(iii)	the time taken, in s, for the activity of the sample to fall from 1.0×10^5 Bq to 0.75×10^5 Bq.
	(6 marks)

TURN OVER FOR THE NEXT QUESTION

(c)

SECTION B: ELECTRONICS

Answer all questions in the spaces provided

2 (a) Figure 1 shows the circuit of a half-wave rectified power supply obtained from an alternating supply of 10 V rms at a frequency of 50 Hz. An oscilloscope is connected across the load resistor R. Assume that the potential drop across the diode is 0.6 V.

Calculate the peak voltage value of the alternating supply.

/	C	

(ii) Draw on the grid below the trace that will be seen on the oscilloscope screen.

time base setting = 5 ms div^{-1}		
time base setting = 5 ms div^{-1} Y sensitivity = 5 V div^{-1}		
,		
	• • • • • • • • • • • • • • • • • • • •	

(5 marks)

(b) Using the same alternating source as in part (a), two diodes, D₁ and D₂, are incorporated into a signalling system as shown in the circuit in **Figure 2**. Each diode has a potential drop of 0.6 V across it.

Figure 2

When either switch A or switch B is closed, one of the LEDs, P or Q, will light. The LEDs have a forward voltage drop of 2.0 V and a maximum forward current of 25 mA.

(i)	Explaining your answer, state which LED will light when switch B is closed.
(ii)	Calculate the minimum preferred value for each of the resistors R, using the E24 series.
(11)	Calculate the minimum preferred value for each of the resistors K, using the L24 series.
	(5 marks)

(a)	State	two characteristics of an operational amplifier.
		(2 marks
(b)	(i)	Draw a circuit diagram showing an operational amplifier used as an inverting voltage amplifier.
	(ii)	Give suitable values for the components you have used in the circuit for a voltag amplification of magnitude 150.
		(4 marks,

(c) When *negative feedback* is used with an amplifier the bandwidth increases.

(i)	Explain what is meant by negative feedback as applied to the circuit drawn in part (b).

(ii) Give **one** other advantage of using negative feedback in this application.

(iii) State what is meant by the bandwidth of an amplifier.

(iv) Indicate on the graph below, by means of a horizontal line, the bandwidth of the amplifier whose characteristic is shown.

.....

voltage gain 25

(5 marks)

4 Different parts of a circuit are often coupled together by a capacitor and a resistor as shown in **Figure 3**. The output waveform depends on the time constant of the coupling circuit.

Figure 4 shows the input signal $V_{\rm in}$, as a function of time.

- (a) Figure 5 shows the output signal, V_{out} , obtained when $R = 200 \,\text{k}\Omega$ and $C = 0.10 \,\mu\text{F}$.
 - (i) Calculate the time constant of the circuit.

(ii) Explain the form of the output voltage signal.

You may be awarded marks for the quality of written communication in your answer.

Figure 5

	(4)
Risi	now changed to $2.0M\Omega$ and C remains at $0.10\mu F$.
(i)	Calculate the new time constant.
(ii)	Chatch on the area below the form of the autout signal. The time apple is the same
()	Sketch on the axes below the form of the output signal. The time scale is the same in Figure 5
()	in Figure 5 .
()	in Figure 5.
()	in Figure 5.
	in Figure 5 . $V_{ m out}$
	in Figure 5. $V_{\text{out}} = \frac{V_{\text{out}}}{V_{\text{o}}} = \frac{1}{1 - 1$
	in Figure 5 . $V_{\text{out}} = \frac{V_{\text{out}}}{V_{\text{o}}} = \frac{1}{1 - 1} = $
	in Figure 5. $V_{\text{out}} = \frac{V_{\text{out}}}{V_{\text{o}}} = \frac{V_{\text{o}}}{V_{\text{o}}} = \frac{V_{\text{o}}}{V_{o}} = \frac{V_{\text{o}}}{V_{\text{o}}} = \frac{V_{\text{o}}}{V_{\text{o}$

END OF QUESTIONS

QUALITY OF WRITTEN COMMUNICATION (2 marks)

