
Surname					Oth	er Names			
Centre Nur	nber					Candidate Number			
Candidate Signature		ure							

General Certificate of Education January 2003 Advanced Level Examination

PHYSICS (SPECIFICATION A) PHA6/W Unit 6 Nuclear Instability: Medical Physics Option

Monday 27 January 2003 Morning Session

In addition to this paper you will require:

- · a calculator;
- · a pencil and a ruler.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 40.
- Mark allocations are shown in brackets.
- The paper carries 10% of the total marks for Physics Advanced.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- You are expected to use a calculator where appropriate.
- In questions requiring description and explanation you will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate. The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

	For Exam	iner's Use			
Number Mark Number Mark					
	IVIAIK	Number	IVIAIN		
1					
2					
3					
4					
5					
Total (Column	1)	-			
Total (Column 2)					
TOTAL					
Examiner's Initials					

Copyright © 2003 AQA and its licensors. All rights reserved.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

	Fundamental constants a	and valu	ies	
	Quantity	Symbol	Value	Units
	speed of light in vacuo	c	3.00×10^{8}	$m s^{-1}$
1	permeability of free space	μ_0	$4\pi \times 10^{-7}$	$H m^{-1}$
I	permittivity of free space	ϵ_0	8.85×10^{-12}	F m ⁻¹
I	charge of electron	e	1.60×10^{-19}	C
I	the Planck constant	h	6.63×10^{-34}	Js
I	gravitational constant	G	6.67×10^{-11}	$N m^2 kg^{-2}$
I	the Avogadro constant	$N_{\rm A}$	6.02×10^{23}	mol ⁻¹
I	molar gas constant	R	8.31	J K ⁻¹ mol
I	the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
	the Stefan constant	σ	5.67×10^{-8}	W m ⁻² K ⁻
-	the Wien constant	α	2.90×10^{-3}	m K
-	electron rest mass	$m_{\rm e}$	9.11×10^{-31}	kg
	(equivalent to 5.5×10^{-4} u)			
	electron charge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹
	proton rest mass	$m_{\rm p}$	1.67×10^{-27}	kg
	(equivalent to 1.00728u)	'		
	proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	C kg ⁻¹
	neutron rest mass	$m_{\rm n}$	1.67×10^{-27}	kg
	(equivalent to 1.00867u)			_
	gravitational field strength	g	9.81	N kg ⁻¹ m s ⁻²
	acceleration due to gravity	g	9.81	m s ⁻²
	atomic mass unit	u	1.661×10^{-27}	kg
	(1u is equivalent to			
	931.3 MeV)			

Fundamental particles

Class	Name	Symbol	Rest energy	
			/MeV	
photon	photon	γ	0	
lepton	neutrino	$ u_{\mathrm{e}}$	0	
		$ u_{\mu}$	0	
	electron	e [±]	0.510999	
	muon	μ^{\pm}	105.659	
mesons	pion	$\boldsymbol{\pi}^{\pm}$	139.576	
		π^0	134.972	
	kaon	\mathbf{K}^{\pm}	493.821	
		\mathbf{K}^0	497.762	
baryons	proton	p	938.257	
	neutron	n	939.551	

Properties of quarks

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}$	$+\frac{1}{3}$	0
s	$-\frac{1}{3}$	$+\frac{1}{3}$	-1

Geometrical equations

 $arc\ length = r\theta$ $circumference\ of\ circle = 2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ *volume of cylinder* = $\pi r^2 h$ area of sphere = $4\pi r^2$ *volume of sphere* = $\frac{4}{3}\pi r^3$

Mechanics and Applied Physics

$$v = u + at$$

$$s = \left(\frac{u+v}{2}\right)t$$

$$s = ut + \frac{at^2}{2}$$

$$v^2 = u^2 + 2as$$

$$F = \frac{\Delta(mv)}{\Delta t}$$

$$P = Fv$$

$$efficiency = \frac{power output}{power input}$$

$$\omega = \frac{v}{r} = 2\pi f$$

$$a = \frac{v^2}{r} = r\omega^2$$

$$I = \sum mr^2$$

$$E_k = \frac{1}{2}I\omega^2$$

$$\omega_2 = \omega_1 + at$$

$$\theta = \omega_1 t + \frac{1}{2}at^2$$

$$\omega_2^2 = \omega_1^2 + 2a\theta$$

$$\theta = \frac{1}{2}(\omega_1 + \omega_2)t$$

$$T = Ia$$

$$angular momentum = I\omega$$

$$W = T\theta$$

$$P = T\omega$$

$$angular impulse = change of angular momentum = Tt$$

$$\Delta Q = \Delta U + \Delta W$$

$$\Delta W = p\Delta V$$

$$pV^{\gamma} = constant$$

$$work done per cycle = area of loop
$$input power = calorific$$

$$value \times fuel flow rate$$

$$indicated power as (area of p loop) \times (no. of cycles/s) \times (no. of cylinders)$$$$

indicated power as (area of p - V $loop) \times (no. of cycles/s) \times$

friction power = indicated power - brake power

efficiency =
$$\frac{W}{Q_{\text{in}}} = \frac{Q_{\text{in}} - Q_{\text{out}}}{Q_{\text{in}}}$$
 $E = \frac{1}{2}QV$

maximum possible $efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$

Fields, Waves, Quantum Phenomena

$$g = \frac{F}{m}$$

$$g = -\frac{GM}{r^2}$$

$$g = -\frac{\Delta V}{\Delta x}$$

$$V = -\frac{GM}{r}$$

$$a = -(2\pi f)^2 x$$

$$v = \pm 2\pi f \sqrt{A^2 - x^2}$$

$$x = A \cos 2\pi f t$$

$$T = 2\pi \sqrt{\frac{I}{g}}$$

$$\lambda = \frac{\omega s}{D}$$

$$d \sin \theta = n\lambda$$

$$\theta \approx \frac{\lambda}{D}$$

$$\ln^2 = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$

$$\ln^2 = \frac{n_2}{n_1}$$

$$\sin \theta_c = \frac{1}{n}$$

$$E = hf$$

$$hf = \phi + E_k$$

$$hf = E_1 - E_2$$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Electricity

$$\begin{aligned}
&\in \frac{E}{Q} \\
&\in I(R+r) \\
&\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \cdots \\
&R_{T} = R_{1} + R_{2} + R_{3} + \cdots \\
&P = I^{2}R \\
&E = \frac{F}{Q} = \frac{V}{d} \\
&E = \frac{1}{4\pi\varepsilon_{0}} \frac{Q}{r^{2}} \\
&E = \frac{1}{2} QV \\
&F = BII \\
&F = BQv \\
&Q = Q_{0}e^{-t/RC}
\end{aligned}$$

 $\Phi = BA$

Turn over

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$$

energy stored =
$$\frac{1}{2}$$
 Fe

$$\Delta Q = mc \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

$$force = Bev$$

radius of curvature =
$$\frac{mv}{Be}$$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

$$F = 6\pi \eta r v$$

$$I = k \frac{I_0}{x^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

Body Mass/kg Mean radius/m

Sun 2.00×10^{30} 7.00×10^{8} Earth 6.00×10^{24} 6.40×10^{6}

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$

$$M = \frac{f_{\rm o}}{f_{\rm e}}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

v = Hd

 $P = \sigma A T^4$

$$\frac{\Delta f}{f} = \frac{\nu}{c}$$

$$\frac{\Delta \lambda}{1} = -\frac{\nu}{2}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
 and $m = \frac{v}{u}$

intensity level = $10 \log \frac{I}{I_0}$

 $I = I_0 e^{-\mu x}$

 $\mu_{\rm m} = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$

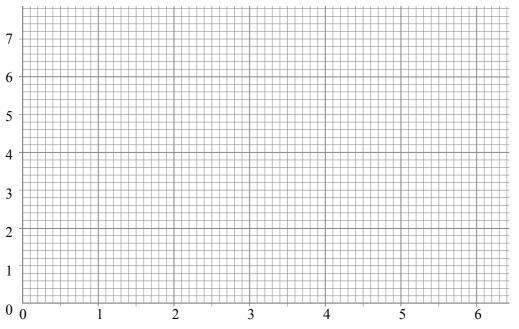
$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_1}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$
 summing

SECTION A NUCLEAR INSTABILITY

Answer all parts of the question.


1	The radioactive isotope of sodium	²² Na has a half life of 2.6 years.	A particular sample of this isotope
	has an initial activity of 5.5×10^5	Bq (disintegrations per second).	

(a`) Explain	what is	meant by	the	random	nature	of	radioactive	decay

You may be awarded marks for the quality of written communication provided in your answer.

(b) Use the axes to sketch a graph of the activity of the sample of sodium over a period of 6 years.

activity/10⁵ Bq

time/year

(2 marks)

alcı	ulate
(i)	the decay constant, in s ⁻¹ , of $^{22}_{11}$ Na, 1 year = 3.15×10^7 s
ii)	the number of atoms of ²² ₁₁ Na in the sample initially,
ii)	the time taken, in s, for the activity of the sample to fall from 1.0×10^5 Bq to 0.75×10^5 Bq.
	(6 marks)

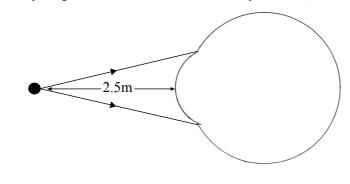
TURN OVER FOR THE NEXT QUESTION

(c)

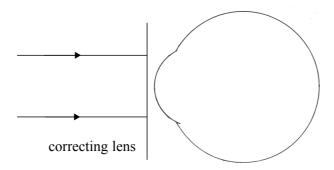
SECTION B MEDICAL PHYSICS

Answer all questions.

2 A defective eye has an unaided far point of 2.5 m and an unaided near point of 0.20 m. A correcting lens is used to produce an aided far point at infinity.


(a) (i) Name the defect of vision affecting the eye.

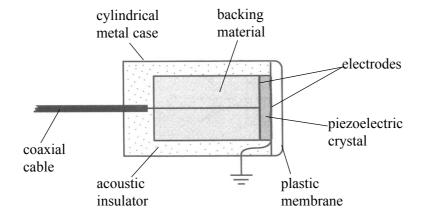
(ii)


State one possible cause of this defect of vision.

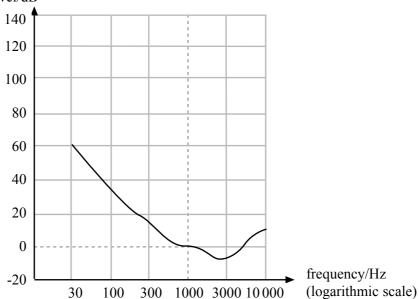
(2 marks)

(b) Complete the ray diagrams below for the defective eye.

rays from a distant point object

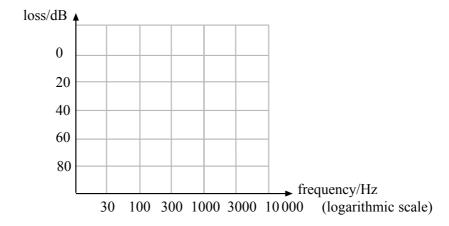

(3 marks)

(c)	(i)	Calculate the power of the correcting lens.
	(ii)	Calculate the aided near point when wearing the correcting lens.
		(4 marks)


TURN OVER FOR THE NEXT QUESTION

3 The diagram shows an ultrasound transducer as used in A-scans. The transducer produces short pulses of ultrasound.

(a)	(i)	Why is it necessary for the pulse to be short?
	(ii)	Explain, with reference to the diagram, the process by which the transducer produces short pulses.
		You may be awarded marks for the quality of written communication provided in your answer.
		(5 marks)
(b)	State imag	one advantage and one disadvantage of ultrasound compared with X-rays in medical ing.
	adva	ntage:
	•••••	
	disad	vantage:
		(2 marks)


4 (a) The graph shows the equal loudness curve for the threshold of hearing. intensity level/dB

- (i) On the diagram sketch the equal loudness curve which has an intensity level of 120 dB at a frequency of 1000 Hz. (120 phon)
- (ii) What is the main similarity between the two curves?

(2 marks)

- (b) On the axes below draw the curves for:
 - (i) age-related hearing loss and label it A,
 - (ii) noise-induced hearing loss and label it B.

(iii) What is the main difference between the two types of hearing loss?

(4 marks)

5 The diagram shows a fluoroscopic image intensifier.

a)	State the purpose of:		
	(i)	the fluorescent screen, A,	
	(ii)	the photocathode,	
	, ,		
	(iii)	the anodes,	
	(111)	the unodes,	
	(i)	the fluorescent series. D	
	(iv)	the fluorescent screen, B.	
		(4 marks)	

(b)	Give one example of a medical application for which an image intensifier might be used. Explain why the use of an image intensifier is required.	
	QUALITY OF WRITTEN COMMUNICATION (2 marks)	

END OF QUESTIONS