

GCE AS/A level

0978/01

MATHEMATICS – FP2 Further Pure Mathematics

A.M. TUESDAY, 18 June 2013 1½ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Using the substitution $u = x^2$, evaluate the integral 1.

$$\int_1^2 \frac{x}{\sqrt{25 - x^4}} \, \mathrm{d}x.$$

Give your answer correct to three significant figures.

[5]

Consider the equation

$$\sin\theta + 3\cos\theta = 2.$$

(a) Putting $t = \tan\left(\frac{\theta}{2}\right)$, show that

$$5t^2 - 2t - 1 = 0. ag{3}$$

- Hence find the general solution of the above trigonometric equation, giving your answers *(b)* in radians.
- 3. (a) Find the four fourth roots of -1, giving your answers in the form x + iy. [6]
 - *(b)* Plot the points corresponding to these roots on an Argand diagram.
 - (ii) The points are joined up to form a square. Find the area of the square. [3]
- The function f is defined on the domain x > 1 by

$$f(x) = \frac{2x+3}{x-1}$$
.

- (a) Show that f is a strictly decreasing function.
- [3]
- *(b)* Given that S = [4, 5], determine
 - (i) f(S),
 - (ii) $f^{-1}(S)$. [6]

5.	The	ellipse	E has	equation
		4111		0 0 00000000000000000000000000000000000

$$x^2 + 2v^2 - 4x + 4v + 2 = 0.$$

- (a) Find
 - (i) the coordinates of the centre,
 - (ii) the eccentricity,
 - (iii) the coordinates of the foci,
 - (iv) the equations of the directrices.

[9]

- (b) (i) Show that the y-axis is a tangent to E.
 - (ii) Find the gradient of the tangent, other than the y-axis, from the origin to E. [7]
- **6.** (a) Express

$$\frac{4x^2-2x+9}{x(x^2+3)}$$

in partial fractions.

[4]

(b) Hence evaluate

$$\int_{1}^{3} \frac{4x^{2} - 2x + 9}{x(x^{2} + 3)} \, \mathrm{d}x,$$

giving your answer correct to three significant figures.

[6]

[3]

7. The function f is defined by

$$f(x) = \frac{(2x^2 + 1)^2}{x^3}$$
.

- (a) Determine whether f is even, odd or neither even nor odd.
- (b) Find the x-coordinates of the stationary points on the graph of f. [4]
- (c) State the equation of each of the asymptotes on the graph of f. [2]
- (d) Sketch the graph of f and its asymptotes. [2]
- **8.** Using de Moivre's Theorem, show that

$$\cos 5\theta = a\cos^5\theta + b\cos^3\theta + c\cos\theta$$
.

where a, b, c are constants whose values are to be determined.

[6]