

GCE AS/A level

0977/01

MATHEMATICS FP1 Further Pure Mathematics

A.M. FRIDAY, 27 January 2012

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. Differentiate $\frac{1}{1-x}$ from first principles.

[6]

2. Find the modulus and the argument of the complex number

$$\frac{1+3i}{1+2i}.$$
 [6]

- 3. Consider the quadratic equation $ax^2 + bx + c = 0$, where a, b, c are real. Given that one of the roots is double the other root,
 - (a) show that

$$ac = \frac{2b^2}{9},\tag{4}$$

(b) deduce that both roots are real.

[2]

4. (a) Express $(2 + 3i)^3$ in the form x + iy, where x, y are real.

[2]

- (b) Hence
 - (i) show that 2 + 3i is a root of the cubic equation

$$x^3 - 3x + 52 = 0,$$

(ii) find the other two roots of the equation.

[5]

5. The matrix A is defined by

$$\mathbf{A} = \begin{bmatrix} k & 1 & 6 \\ 1 & k & 4 \\ 0 & 1 & 1 \end{bmatrix}.$$

(a) Show that A is non-singular for all real values of k.

[4]

- (b) Given that k = 3,
 - (i) find the adjugate matrix of A,
 - (ii) find the inverse matrix of A,
 - (iii) hence solve the equations

$$3x + y + 6z = 1,$$

 $x + 3y + 4z = -1,$
 $y + z = -1.$ [7]

6. Use mathematical induction to prove that, for all positive integers n,

$$\sum_{r=1}^{n} r(r+1) = \frac{n(n+1)(n+2)}{3}.$$
 [6]

- 7. The transformation T in the plane consists of a translation in which the point (x, y) is transformed to the point (x + h, y + k) followed by a clockwise rotation through 90° about the origin.
 - (a) Show that the matrix representing T is

$$\begin{bmatrix} 0 & 1 & k \\ -1 & 0 & -h \\ 0 & 0 & 1 \end{bmatrix}.$$
 [3]

[4]

- (b) Given that the fixed point of T is (1, 3),
 - (i) find the values of h and k,
 - (ii) find the equation of the image of the line y = 3x + 1 under T. [8]
- 8. The complex number z is represented by the point P(x, y) in the Argand diagram. Given that $|z \mathbf{i}| = 2|z + \mathbf{i}|$,

show that the locus of P is a circle and find its radius and the coordinates of its centre. [8]

9. The function f is defined, for 0 < x < 1, by

$$f(x) = (\sin x)^x$$
.

(a) Use logarithmic differentiation to show that

$$f'(x) = f(x)g(x),$$

where g(x) is to be determined.

- (b) The graph of f has one stationary point. Show that its x-coordinate, α , lies between 0.39 and 0.40.
- (c) Show that

$$f''(\alpha) = f(\alpha)g'(\alpha)$$
.

Given that the value of α is 0.399, correct to three significant figures, determine whether the stationary point is a maximum or a minimum. [7]