

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

979/01

MATHEMATICS FP3

Further Pure Mathematics

A.M. FRIDAY, 22 June 2007

 $(1\frac{1}{2} \text{ hours})$

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Use the substitution $x = 2\sinh\theta - 1$ to evaluate the integral

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{x^2 + 2x + 5}}.$$
 [8]

2. The function f is defined by

$$f(x) = x^3 + 3x^2 + 6x - 5.$$

- (a) Show that f is strictly increasing for all values of x. Deduce the number of real roots of the equation f(x) = 0. [4]
- (b) (i) Show that the equation f(x) = 0 has a root in the interval [0, 1].
 - (ii) Use the Newton-Raphson method to find the value of this root correct to four decimal places. [7]

3.

The above diagram shows the upper half of the circle with equation $x^2 + y^2 = a^2$.

(a) Show that, on this curve,

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \frac{a^2}{y^2}.$$
 [4]

(b) Hence show that the curved surface area of a sphere with radius a is equal to $4\pi a^2$. [4]

4.

The diagram shows the initial line, the line $\theta = \frac{\pi}{2}$ and the curves C_1 , C_2 with equations

$$C_1: r = e^{\theta} \left(0 \leqslant \theta \leqslant \frac{\pi}{2}\right),$$

 $C_2: r = 2e^{-\theta} \left(0 \leqslant \theta \leqslant \frac{\pi}{2}\right).$

- (a) Find the polar coordinates of the point of intersection of C_1 and C_2 . [4]
- (b) Find the area of the shaded region. [5]
- **5.** (a) Given that

 $a\cosh x + b\sinh x \equiv r\cosh(x + \alpha)$ where a > b > 0, r > 0,

show that

$$\alpha = \frac{1}{2} \ln \left(\frac{a+b}{a-b} \right)$$

and find an expression for r in terms of a and b.

[8]

(b) Hence, or otherwise, solve the equation

$$5\cosh x + 3\sinh x = 4$$
,

giving your answer as a natural logarithm.

[4]

(979-01) **Turn over.**

6. The function f is defined by

$$f(x) = \ln \tan \left(\frac{\pi}{4} + x\right).$$

(a) Show that

$$f'(x) = 2\sec 2x. [4]$$

- (b) Find the first two non-zero terms in the Maclaurin expansion of f.
- [7]

(c) The equation

$$f(x) = 10x^3$$

has a small positive root. Find its approximate value.

[3]

7. The integral I_n is defined, for $n \ge 0$, by

$$I_n = \int_0^1 x^n (1-x)^{\frac{3}{2}} dx.$$

(a) Show that, for $n \ge 1$,

$$I_n = \left(\frac{2n}{2n+5}\right)I_{n-1}.\tag{7}$$

(b) Evaluate I_2 . [6]