# Vectors Straight lines in 3D

#### Vectors and Three– Dimensional Coordinate Geometry

Applications of vectors to two- and three-dimensional geometry, involving points, lines and planes.

Cartesian coordinate geometry of lines and planes. Direction ratios and direction cosines. Including the equation of a line in the form  $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$ .

Vector equation of a plane in the form  $\mathbf{r} \cdot \mathbf{n} = d$  or  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ . Intersection of a line and a plane.

Angle between a line and a plane and between two planes.

To include finding the equation of the line of intersection of two nonparallel planes.

Including the use of  $l^2 + m^2 + n^2 = 1$  where l, m, n are the direction cosines.

Knowledge of formulae other than those in the formulae booklet will not be expected.

#### In formulae book

• If A is the point with position vector  $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$  and the direction vector  $\mathbf{b}$  is given by  $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ , then the straight line through A with direction vector  $\mathbf{b}$  has cartesian equation

$$\frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} = \lambda$$

- The plane through A with normal vector  $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$  has cartesian equation  $n_1 x + n_2 y + n_3 z = d$  where  $d = \mathbf{a.n}$
- The plane through non-collinear points A, B and C has vector equation

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{c} - \mathbf{a}) = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}$$

• The plane through the point with position vector **a** and parallel to **b** and **c** has equation

$$\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$$

### Scalar and vector products Relative position of vectors

Consider the vectors a, b and c

Angle between vectors.

If 
$$\theta$$
 is the angle between **a** and **b**,  $Cos\theta = \frac{\mathbf{a}}{|\mathbf{a}|}$ 

and 
$$Sin\theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}||\mathbf{b}|}$$





Parallel and perpendicular vectors.

If a and b are parallel,

$$\mathbf{a} \times \mathbf{b} = 0$$

If  $\mathbf{a}$  and  $\mathbf{b}$  are perpendicular,  $\mathbf{a}.\mathbf{b} = 0$ 

The vector  $\mathbf{a} \times \mathbf{b}$  is a vector perpendicular to both  $\mathbf{a}$  and  $\mathbf{b}$ 

Coplanar vectors

The vectors  $\mathbf{a}$ ,  $\mathbf{b}$  and  $\mathbf{c}$  are coplanar if it exists two real  $\lambda$  and  $\mu$  so that  $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$ .

 $\mathbf{a}, \mathbf{b}$  and  $\mathbf{c}$  are coplanar if  $\mathbf{a}.(\mathbf{b} \times \mathbf{c}) = 0$ 

The vectors **a**,**b** and **c** are coplanar is equivalent to say that the points O, A, B and C are coplanar.



## Equations of a straight line in 3 dimensions



Like in 2D, to define a line in space, we need a point and a direction which is equivalent to : we need a position vector and a direction vector

Let's call **a** the vector position of a point A and **u** a direction vector. Consider the line going through A parallel to **u**.

To work out an equation of this line is to find a property satisfied by any point R, or vector position  $\mathbf{r}$ , which belongs to this line.

The point R belongs to the line is equivalent to say that:

The vector  $\overrightarrow{AR}$  is a multiple of  $\mathbf{u}$ 

$$\overrightarrow{AR} = t\mathbf{u}$$
 where  $t \in \mathbb{R}$   
 $\mathbf{r} - \mathbf{a} = t\mathbf{u}$   
 $\mathbf{r} = \mathbf{a} + t\mathbf{u}$   $t \in \mathbb{R}$ 

With components

$$\mathbf{r} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + t \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad t \in \mathbb{R}$$

This is a PARAMETRIC vector equation of the line

### Examples:

Find a vector equation of the straight line which passes through the point A, with position vector 3i − 5j + 4k, and is parallel to the vector 7i − 3k.

• Find a vector equation of the straight line which passes through the points A and B, with coordinates (4, 5, -1) and (6, 3, 2) respectively.

• The straight line l has vector equation  $\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}) + t(\mathbf{i} - 6\mathbf{j} - 2\mathbf{k})$ . Given that the point (a, b, 0) lies on l, find the value of a and the value of b.

1) Find a vector equation of the straight line which passes through the point A, with position vector **a**, and is parallel to the vector **b**:

$$a = 6i + 5j - k, b = 2i - 3j - k$$

$$b a = 2i + 5j, b = i + j + k$$

$$c = -7i + 6j + 2k, b = 3i + j + 2k$$

$$\mathbf{d} \ \mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$$

2) Find a vector equation for the line which passes through the points:

**d** 
$$(-2, -3, -7)$$
 and  $(12, 4, -3)$ 

3) The point (1, p, q) lies on the line l. Find the values of p and q, given that the equation is l is:

$$\mathbf{a} \ \mathbf{r} = (2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) + t(\mathbf{i} - 4\mathbf{j} - 9\mathbf{k})$$

**b** 
$$\mathbf{r} = (-4\mathbf{i} + 6\mathbf{j} - \mathbf{k}) + t(2\mathbf{i} - 5\mathbf{j} - 8\mathbf{k})$$

$$\mathbf{c} \ \mathbf{r} = (16\mathbf{i} - 9\mathbf{j} - 10\mathbf{k}) + t(3\mathbf{i} + 2\mathbf{j} + \mathbf{k})$$

$$\mathbf{I} \quad \mathbf{A} \quad \mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 4 \\ 4 \end{pmatrix} = \mathbf{A} \quad \mathbf{G} \quad \mathbf$$

## Equation of a line - vector product



The point R belongs to the line is equivalent to say that:

The vector  $\overrightarrow{AR}$  is parallel to the vector  $\mathbf{u}$ 

so 
$$\overrightarrow{AR} \times \mathbf{u} = 0$$
  
 $(\mathbf{r} - \mathbf{a}) \times \mathbf{u} = 0$ 

This can also be written:  $\mathbf{r} \times \mathbf{u} - \mathbf{a} \times \mathbf{u} = 0$ 

$$\mathbf{r} \times \mathbf{u} = \mathbf{a} \times \mathbf{u}$$

With components

$$\begin{pmatrix} \mathbf{r} - \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = 0$$

This is the VECTOR PRODUCT FORM form of the equation.

## Example:

• Find the vector equation of the line through the points (1, 2, -1) and (3, -2, 2) in the form  $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$ .

Find an equation of the straight line passing through the point with position vector 
$$\mathbf{a}$$
 which is parallel to the vector  $\mathbf{b}$ , giving your answer in the form  $\mathbf{r} \times \mathbf{b} = \mathbf{c}$ , where  $\mathbf{c}$  is evaluated:

$$a a = 2i + j + 2k$$
  $b = 3i + j - 2k$ 

$$\mathbf{b} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$

$$\mathbf{b} \ \mathbf{a} = 2\mathbf{i} - 3\mathbf{k}$$

$$\mathbf{b} = \mathbf{i} + \mathbf{j} + 5\mathbf{k}$$

c 
$$a = 4i - 2j + k$$
  $b = -i - 2j + 3k$ 

$$\mathbf{b} = -\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$$

Find, in the form  $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$ , an equation of the straight line passing through the points with coordinates

**7** Given that the point with coordinates (p, q, 1) lies on the line with equation

$$\mathbf{r} \times \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ -7 \\ -3 \end{pmatrix}$$
, find the values of  $p$  and  $q$ .

8 Given that the equation of a straight line is

$$\mathbf{r} \times \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

Hint: Let  $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$  and set up simultaneous equations.

find an equation for the line in the form  $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ , where t is a scalar parameter.

$$\xi = p \text{ and } \xi = q$$
 7  
 $(A - 1 + 1)t + A2 + 1 - = T$  8

$$O = \begin{pmatrix} \varepsilon - \\ I - \\ S \end{pmatrix} \times \left[ \begin{pmatrix} I \\ I \\ I \end{pmatrix} - \mathbf{x} \right] \mathbf{b}$$

$$\mathbf{o} = \begin{pmatrix} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{pmatrix} \times \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} - \mathbf{J} \quad \mathbf{o}$$

$$0 = \begin{pmatrix} I - \\ I - \\ 1 \end{pmatrix} \times \begin{bmatrix} \xi \\ \xi \\ 2I \end{pmatrix} - \mathbf{r} \end{bmatrix} \mathbf{d}$$

$$\mathbf{0} = \begin{pmatrix} \mathbf{2} \\ \mathbf{1} \\ \mathbf{\xi} - \end{pmatrix} \times \begin{bmatrix} \begin{pmatrix} \mathbf{1} \\ \mathbf{\xi} \\ \mathbf{\xi} \end{pmatrix} - \mathbf{1} \end{bmatrix} \quad \mathbf{8} \quad \mathbf{\xi}$$

**b** 
$$\mathbf{r} \times (\mathbf{i} + \mathbf{j} + 5\mathbf{k}) = 3\mathbf{i} - 13\mathbf{j} + 2\mathbf{k}$$
  
**c**  $\mathbf{r} \times (-\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = -4\mathbf{i} - 13\mathbf{j} - 10\mathbf{k}$ 

$$\mathbf{A} - \mathbf{i}0\mathbf{i} + \mathbf{i}4 - 2\mathbf{k} = -4\mathbf{i} + 10\mathbf{j} - \mathbf{k}$$

### Equation of a line - Cartesian equations - direction ratios

The parametric equation of a line can be written

$$\mathbf{r} = \mathbf{a} + t\mathbf{u} \qquad t \in \mathbb{R}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + t \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \text{ this gives}$$

$$\begin{cases} x = a_1 + tu_1 \\ y = a_2 + tu_2 \\ z = a_3 + tu_3 \end{cases}$$
 now make t the subject: 
$$\begin{cases} t = \frac{x - u_1}{u_1} \\ t = \frac{y - a_2}{u_2} \\ t = \frac{z - a_3}{u_3} \end{cases}$$



$$t = \frac{x - a_1}{u_1} = \frac{y - a_2}{u_2} = \frac{z - a_3}{u_3}$$
 are the CARTESIAN equations of the lines.

This is also called the **DIRECTION RATIO** form of the equation because it can be obtained simply from the ratios of the x,y and z components of the direction vector of the line:

$$u_1:u_2:u_3=x-a_1:y-a_2:z-a_3$$

#### Example:

Find the direction ratio form of the equation of the line through A(1,-1,4) and B(2,2,3).

1 Find the cartesian equations for each of the line passing through the point with position vector **a** which is parallel to the vector **b**.

$$a \ a = 2i + j + 2k$$
  $b = 3i + j - 2k$ 

$$\mathbf{b} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{l}$$

$$\mathbf{b} \ \mathbf{a} = 2\mathbf{i} - 3\mathbf{k}$$

**b** 
$$a = 2i - 3k$$
  $b = i + j + 5k$ 

c 
$$a = 4i - 2j + k$$
  $b = -i - 2j + 3k$ 

$$\mathbf{b} = -\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$$

**2** Find, in the form **i**  $\mathbf{r} \times \mathbf{b} = \mathbf{c}$ , and also in the form **ii**  $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ , where t is a scalar parameter, the equation of the straight line with Cartesian equation

$$\frac{(x-3)}{2} = \frac{(y+1)}{5} = \frac{(2z-3)}{3} = \lambda.$$

$$x = \frac{x - 4}{1 - 2} = \frac{2 - 1}{3 - 2} = \frac{3}{3}$$

$$\lambda = \frac{\delta}{\delta} = \frac{1}{\delta} = \frac{1}{\delta} = \frac{1}{\delta}$$

$$\lambda = \frac{2 - 2}{1 - 2} = \frac{1}{1 - 2} = \frac{2}{1 - 2} = \lambda$$

### Summary

### Equations of a line

A is a point with vector position  $\mathbf{a} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\mathbf{u} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$  is a (direction) vector.

The point R has position vector  $\mathbf{r} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ .



We have seen that the line going through A following the direction of **u** has three type of equations.

R belongs to the line if and only if:

• 
$$\mathbf{r} = \mathbf{a} + t\mathbf{u}$$
 meaning  $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + t \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$   $t \in \mathbb{R}$  (Parametric vector equation)

• 
$$(\mathbf{r} - \mathbf{a}) \times \mathbf{u} = 0$$
 meaning  $\begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = 0$  (Vector product equation)

$$\frac{x - a_1}{u_1} = \frac{y - a_2}{u_2} = \frac{z - a_3}{u_3}$$

(Cartesian equations or direction ratios)

## Direction cosines

A line L has direction vector  $\mathbf{u} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ 

We consider the angles that the vector  $\mathbf{u}$  makes with the x-, y- and z- axes. Respectively,  $\theta_1, \theta_2$  and  $\theta_3$ .



Using trigonometry in the right-angle triangles, we have:

### Alternative views





#### Conclusion:

A line L has direction vector  $\mathbf{u} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ 

We consider the angles that the vector  $\mathbf{u}$  makes with the x-, y- and z- axes. Respectively,  $\theta_1, \theta_2$  and  $\theta_3$ .

$$Cos \ \theta_1 = \frac{u_1}{|\mathbf{u}|} = l$$
  $Cos \ \theta_2 = \frac{u_2}{|\mathbf{u}|} = m$ 

$$Cos \ \theta_3 = \frac{u_3}{|\mathbf{u}|} = r$$

The quantities l, m and n are called the DIRECTION COSINES of the line.

#### Property:

If l, m and n are the direction cosines then  $l^2 + m^2 + n^2 = 1$ 

### Proof:

### Exercise:

Find the angles made by the line

$$\frac{x-1}{\sqrt{2}} = \frac{y-2}{1} = \frac{z-3}{-1}$$

with the coordinate axes.



### Relative positions of two lines in space





example:

$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$
 and 
$$\mathbf{r} = s \begin{pmatrix} 6 \\ -3 \\ 12 \end{pmatrix}$$

are parallel

$$\mathbf{v} = \begin{pmatrix} 6 \\ -3 \\ 12 \end{pmatrix} = 3\mathbf{u} = 3 \times \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$



Two lines can intersect.



Two lines can be SKEW

These two cases are treated the same way: Solve simultaneously the equations

If a solution exists, the line intersect

$$L_1: \mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$
 and

$$L_2: \mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + s \begin{pmatrix} 6 \\ 0 \\ 4 \end{pmatrix} \text{ intersect.}$$

Find the position vector of the point of intersection.

If there is no solution they are skew

Show that 
$$L_1: \mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$$
 and

$$L_2: \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} \text{ are skew.}$$

1) State which of the following lines are parallel to the line 
$$r = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$$

$$l_{1}: \mathbf{r} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} - 4\mathbf{j} + 6\mathbf{k})$$

$$l_{2}: \mathbf{r} = 6\mathbf{i} - 4\mathbf{j} + 2\mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$

$$l_{3}: \mathbf{r} = (2 - \lambda)\mathbf{i} + (-4 + 2\lambda)\mathbf{j} + (1 - 3\lambda)\mathbf{k}$$

$$l_{4}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

- 2) Show that the lines with equations  $\mathbf{r} = 3\mathbf{i} 2\mathbf{j} + \mathbf{k} + \lambda(2\mathbf{i} + 4\mathbf{j} + 3\mathbf{k})$  and  $\mathbf{r} = \mathbf{i} + 2\mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} + \mathbf{k})$  intersect and find the point of intersection.
  - a Check the direction vectors are not equal so the lines are not parallel.
  - **b** Equate the coefficients of **i** and **j** to find  $\lambda$  and  $\mu$ .
  - c Show that with these values of  $\lambda$  and  $\mu$ , the coefficients of j are equal.
  - d Find the point of intersection of the lines.
- 3) Show that the following lines intersect and find the position vector of the point of intersection.

a 
$$\mathbf{r} = 4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} + 3\mathbf{k})$$
  
 $\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 5\mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$   
 $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ 

$$\mathbf{b} \ \mathbf{r} = \begin{pmatrix} -3 \\ 4 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{r} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

c 
$$\mathbf{r} = (2 + \lambda)\mathbf{i} + (1 + 3\lambda)\mathbf{j} + (4 - 2\lambda)\mathbf{k}$$
  
 $\mathbf{r} = (7 - \mu)\mathbf{i} + (-8 + 3\mu)\mathbf{j} + (-6 + 2\mu)\mathbf{k}$ 

- **4)** Find the coordinates of the point where the line  $\mathbf{r} = \begin{pmatrix} 4 \\ 1 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$  meets the *xy*-plane.
- 5) Find the coordinates of the point where the line  $\mathbf{r} = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 8 \\ 10 \\ 4 \end{pmatrix}$  meets the yz-plane.
- **6)** Line *l* cuts the *xy*-plane at (4, 5, 0) and the *yz*-plane at (0, 15, 4).
  - a Find a vector equation of line l.
  - **b** Find the coordinates of the points where line *l* meets the *xz*-plane.
- 7) In parts a, b and c you are given a pair of lines. Determine whether the lines are parallel, skew or intersect at a point.

$$\mathbf{a} \quad \mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 10 \\ 2 \end{pmatrix}$$

$$\mathbf{b} \quad \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$

$$\mathbf{c} \quad \mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} 1 \\ -5 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 6 \\ 9 \\ -3 \end{pmatrix}$$

1) 
$$\int_{1} \operatorname{and} \, \int_{3}^{2}$$
2)  $\lambda = 1, \mu = 2, 5\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ 
2)  $\lambda = 1, \mu = 2, 5\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
5)  $(0, 0, -2, -4)$ 
6)  $(0, 0, -2, -4)$ 
7)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
7)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
1)  $(0, 0, -2, -4)$ 
2)  $(0, 0, -2, -4)$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
3)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
4)  $(0, 0, -2, -4)$ 
5)  $(0, 0, -2, -4)$ 
6)  $(0, 0, -2, -4)$ 
7)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
8)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -2, -4)$ 
9)  $(0, 0, -$ 

# Angles between two intersecting lines

### If two lines intersect, you can work out the angle(s) between the lines



Note that when two lines cross, they form two angles:

an acute  $\theta_1$  and an obtuse angle  $\theta_2$ 

$$\theta_1 + \theta_2 = 180^{\circ}$$

(In the exam, they will tell you which one is required.)

To work out the ACUTE angle between the lines,

using the scalar product of **u** and **v**, work out  $\cos(\alpha) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}}$ 

If  $\alpha$  is acute, then  $\theta_1 = \alpha$ 

If  $\alpha$  is obtuse, then  $\theta_1 = 180^{\circ} - \alpha$ 

#### Example:

Find the coordinates of the point of intersection of the lines  $l_1$  and  $l_2$  where

 $l_1$  has equation  $\mathbf{r} = 3\mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$  and

 $l_2$  has equation  $\mathbf{r} = -2\mathbf{j} + 3\mathbf{k} + \mu(-5\mathbf{i} + \mathbf{j} + 4\mathbf{k})$ 

Find the acute angle between the lines. Give your answer rounded to two decimal places

## Shortest distance between a point and a line



The line L goes through the point A, with vector position  $\mathbf{a}$  and is parallel to the vector  $\mathbf{u}$ .

The point P, with vector position p does not belong to the line.

The perpendicular distance from the point P to the line is  $d = PH = AP \times Sin\theta$  where  $\theta$  is the angle between  $\overrightarrow{AP}$  and  $\mathbf{u}$ 

$$d = \frac{|\overrightarrow{AP}| \times |\mathbf{u}| \times Sin\theta}{|\mathbf{u}|} = d = \frac{|\overrightarrow{AP} \times \mathbf{u}|}{|\mathbf{u}|}$$

## Example:

Find the perpendicular distance from the point P(2, -1, 3) to the straight line with the equation y+2 z-1

$$x-2=\frac{y+2}{3}=\frac{z-1}{2}$$
.

# Shortest distance between two parallel lines





Using trigonometry, we establish

that  $d = BH = AB \times Sin\theta$  where  $\theta$  is the angle between  $\overrightarrow{AB}$  and  $\mathbf{u}$ 

$$d = \frac{\left| \overrightarrow{AB} \times \mathbf{u} \right|}{\left| \mathbf{u} \right|} \ also \ d = \frac{\left| \overrightarrow{AB} \times \mathbf{v} \right|}{\left| \mathbf{v} \right|}$$

#### Try it:

Show that the shortest distance between the parallel lines with equations  $\mathbf{r} = \mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda(5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k})$  and  $\mathbf{r} = 2\mathbf{i} + \mathbf{k} + \mu(5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k})$ , where  $\lambda$  and  $\mu$  are scalars, is  $\frac{21\sqrt{2}}{10}$ .

# Shortest distance between two skew lines





Using trigonometry, we establish

that  $d = AB \times Cos\theta$  where  $\theta$  is the angle between  $\overrightarrow{AB}$  and  $\mathbf{u} \times \mathbf{v}$ 

$$d = \frac{\left| \overrightarrow{AB}.(\mathbf{u} \times \mathbf{v}) \right|}{\left| \mathbf{u} \times \mathbf{v} \right|}$$

#### Try it

Find the shortest distance between the two skew lines with equations  $\mathbf{r} = \mathbf{i} + \lambda(\mathbf{j} + \mathbf{k})$  and  $\mathbf{r} = -\mathbf{i} + 3\mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} - \mathbf{k})$ , where  $\lambda$  and  $\mu$  are scalars.

- 1) Find the shortest distance between the two skew lines with equations  $\mathbf{r} = \mathbf{i} + \lambda(-3\mathbf{i} 12\mathbf{j} + 11\mathbf{k})$  and  $\mathbf{r} = 3\mathbf{i} \mathbf{j} + \mathbf{k} + \mu(2\mathbf{i} + 6\mathbf{j} 5\mathbf{k})$ , where  $\lambda$  and  $\mu$  are scalars.
- 2) Find the shortest distance between the parallel lines with equations  $\mathbf{r} = 2\mathbf{i} \mathbf{j} + \mathbf{k} + \lambda(-3\mathbf{i} 4\mathbf{j} + 5\mathbf{k})$  and  $\mathbf{r} = \mathbf{j} + \mathbf{k} + \mu(-3\mathbf{i} 4\mathbf{j} + 5\mathbf{k})$ , where  $\lambda$  and  $\mu$  are scalars.
- 3) Determine whether the lines  $l_1$  and  $l_2$  meet. If they do, find their point of intersection. If they do not, find the shortest distance between them. (In each of the following cases  $\lambda$  and  $\mu$  are scalars.)
  - **a**  $l_1$  has equation  $\mathbf{r} = \mathbf{i} + \mathbf{j} + \lambda(2\mathbf{i} \mathbf{j} + 5\mathbf{k})$  and  $l_2$  has equation  $\mathbf{r} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k} + \mu(2\mathbf{i} 5\mathbf{j} + \mathbf{k})$
  - **b**  $l_1$  has equation  $\mathbf{r} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k} + \lambda(2\mathbf{i} 2\mathbf{j} + 2\mathbf{k})$  and  $l_2$  has equation  $\mathbf{r} = \mathbf{i} \mathbf{j} + 3\mathbf{k} + \mu(\mathbf{i} \mathbf{j} + \mathbf{k})$
  - **c**  $l_1$  has equation  $\mathbf{r} = \mathbf{i} + \mathbf{j} + 5\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} 2\mathbf{k})$  and  $l_2$  has equation  $\mathbf{r} = -\mathbf{i} \mathbf{j} + 2\mathbf{k} + \mu(\mathbf{i} + \mathbf{j} + \mathbf{k})$
- 4) Find the shortest distance between the point with coordinates (4, 1, -1) and the line with equation

 $\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} - \mathbf{k})$ , where  $\mu$  is a scalar.

```
x = \frac{13}{5} or 2.81 (3 s.f.)

a The lines do not meet.

b Lines do not meet.

x = 3\sqrt{2} or 4.24 (3 s.f.)

c Lines do not meet.

c Lines do not meet.

Shortest distance = 0.196 (3 s.f.)

3.54 (3 s.f.)
```

### Miscellaneous questions

- 2. Find the distance of the point (1, 1, 2) from the line  $\mathbf{r} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ .
- 3. A line has the equation

$$\frac{x-1}{-2} = \frac{y-3}{4}, \quad z = 1.$$

Express this in the form  $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$ .

13. The line L passes through the point A(4, 4, -3) and has vector equation

$$\mathbf{r} = \begin{bmatrix} 4 \\ 4 \\ -3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}.$$

- (a) Show that the line M which passes through the points B(4, 6, 1) and C(6, 7, 3) is parallel to the line L.
- (b) (i) Given that angle ACB is  $\theta$ , show that  $\cos \theta = \frac{19}{21}$ .
  - (ii) Express  $\sin \theta$  in surd form.
- (c) Hence, or otherwise, show that the shortest distance between the lines L and M is  $k\sqrt{5}$ , where k is a rational number to be determined.

[AQA-NEAB, 2001]

- 6. Four points are given by A(1, -2, 0), B(3, -3, -1), C(2, 3, -1) and D(3, 4, -5).
  - (a) Calculate  $\overrightarrow{AB} \times \overrightarrow{CD}$ .
  - (b) Hence find the shortest distance between AB and CD.
- 12. The lines  $L_1$  and  $L_2$  have vector equations  $\mathbf{r} = (2 + \lambda)\mathbf{i} + (-2 \lambda)\mathbf{j} + (7 + \lambda)\mathbf{k}$  and  $\mathbf{r} = (4 + 4\mu)\mathbf{i} + (26 + 14\mu)\mathbf{j} + (-3 5\mu)\mathbf{k}$ , respectively, where  $\lambda$  and  $\mu$  are scalar parameters.
  - (a) The vector  $\mathbf{n} = -\mathbf{i} + a\mathbf{j} + b\mathbf{k}$ , where a and b are integers, is perpendicular to both  $L_1$  and  $L_2$ . Find the value of a and the value of b.
  - (b) The point P on  $L_1$  and the point Q on  $L_2$  are such that  $\overrightarrow{PQ} = m \mathbf{n}$  for some scalar constant m.
    - (i) Determine the value of m.
    - (ii) Deduce the shortest distance between  $L_1$  and  $L_2$ .

[AQA-NEAB, 2000]

# **Answers**

2. 
$$\frac{1}{6}\sqrt{30}$$

3. 
$$\begin{pmatrix} \mathbf{r} - \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} -2 \\ 4 \\ 0 \end{bmatrix} = \mathbf{0}$$

6. (a) 
$$3\mathbf{i} + 9\mathbf{j} + 3\mathbf{k}$$
 (b)  $\frac{15}{11}\sqrt{11}$ 

(b) 
$$\frac{15}{11}\sqrt{11}$$

12. (a) 
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 4 \\ 14 \\ -5 \end{bmatrix} = 9 \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \implies a = 1, \quad b = 2$$

(b)(i) 
$$\overrightarrow{PQ} \cdot \mathbf{n} = m \mathbf{n} \cdot \mathbf{n}$$

(ii) 
$$\sqrt{6}$$
 units

$$\begin{bmatrix} 2 \\ 28 \\ -10 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} = 6m \implies m = 1$$

13. (a) 
$$\overrightarrow{BC} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

(b)(i) 
$$\begin{bmatrix} -2 \\ -1 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -3 \\ -6 \end{bmatrix} = 21\cos\theta \implies \cos\theta = \frac{19}{21}$$
 (ii)  $\sin\theta = \frac{4\sqrt{5}}{21}$ 

(ii) 
$$\sin \theta = \frac{4\sqrt{5}}{21}$$

(c) 
$$|AC|\sin\theta = \frac{4\sqrt{5}}{3}$$