### Matrix transformations

#### Matrix Algebra

Matrix transformations in two dimensions: shears.

Candidates will be expected to recognise the matrix for a shear parallel to the x or y axis. Where the line of invariant points is not the x or y axis candidates will be informed that the matrix represents a shear. The combination of a shear with a matrix transformation from MFP1 is included.

Rotations, reflections and enlargements in three dimensions, and combinations of these. Rotations about the coordinate axes only. Reflections in the planes x = 0, y = 0, z = 0, x = y, x = z, y = z only.

### Pre-requisite: Further pure 1 - matrix transformations

Transformations of points in the x-y plane represented by  $2 \times 2$  matrices. Transformations will be restricted to rotations about the origin, reflections in a line through the origin, stretches parallel to the x-and y-axes, and enlargements with centre the origin.

Use of the standard transformation matrices given in the formulae booklet.

Combinations of these transformations

### Transformations in 2D

Consider the matrix 
$$M = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$$

### The base of the set of axes are the vectors

$$\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and  $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 

- The image of **i** through the transformation is  $\mathbf{M} \times \mathbf{i} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$
- The image of **j** through the transformation is  $\mathbf{M} \times \mathbf{j} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$
- The image of any point P(x, y) with position vector  $\mathbf{p} = \begin{pmatrix} x \\ y \end{pmatrix}$  is  $\mathbf{M} \times \mathbf{p}$



### Example:

The transformation T is represented by the matrix  $M = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ 

Work out the position vector image of the following:

$$\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
  $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$   $\mathbf{p} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$   $\mathbf{q} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ 

# <u>Usual transformations</u>

| Stretch in the x-direction                                                                      | B'B C C'     |
|-------------------------------------------------------------------------------------------------|--------------|
| $M = \begin{pmatrix} k & 0 \end{pmatrix}$                                                       |              |
| $M = \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$                                              | A'           |
| X 2                                                                                             | 0 A          |
|                                                                                                 | with k=3     |
| Stretch in the y-direction                                                                      | B' C'        |
| $M = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$                                              |              |
| $\begin{pmatrix} 0 & k \end{pmatrix}$                                                           |              |
|                                                                                                 |              |
|                                                                                                 | ВС           |
|                                                                                                 |              |
|                                                                                                 | A'           |
|                                                                                                 | O A with k=3 |
| Enlargement centre O(0,0)                                                                       | B' C'        |
| by a scale factor k                                                                             |              |
| The second second                                                                               |              |
| $M = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$                                              | -            |
| (0 11)                                                                                          | вс           |
|                                                                                                 |              |
|                                                                                                 | , A'         |
|                                                                                                 | 0 A          |
| Reflection in the line                                                                          | ВС           |
| $y = (Tan\theta)x$                                                                              | Ť            |
|                                                                                                 | A' -         |
| $M = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$ |              |
| (311120 -00320)                                                                                 | O A          |
|                                                                                                 | C'           |
|                                                                                                 |              |
|                                                                                                 | В'           |
| E1                                                                                              | With θ=15°   |
| Example of a matrix transformation with                                                         | c'           |
| determinant = 0                                                                                 | B C A'       |
| (16 0.8)                                                                                        | B'           |
| $M = \begin{pmatrix} 1.0 & 0.8 \\ 0.8 & 0.4 \end{pmatrix}$                                      |              |
| (0.0 0.4)                                                                                       | 0 A          |
| T.                                                                                              | IS           |



### Meaning of the determinant

$$\mathbf{M} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$$
 represents a tranformation T.

 $\bullet \det(\mathbf{M}) = a_1 b_2 - b_1 a_2$ 

|det(M)| is the AREA SCALE FACTOR of the transformation

## Meaning of the sign of the determinant

If the determinant is positive ( det(M)>0 ), the sense in which the perimeter is traced is unchanged

B' C

If the determinant is negative ( det(M)<0 ), the sense in which the perimeter is traced is reversed

(If the determinant is negative, a reflection is "involved" is the transformation)



#### "Preservation" of the area

The  $2 \times 2$  matrix **M** represents the plane transformation T. Write down the value of det **M** in each of the following cases:

- (a) T is a rotation;
- (b) T is a reflection;
- (c) T is a shear;
- (d) T is an enlargement with scale factor 3.

(4 marks)

### Composing transformations

The transformation  $T_1$  is represented by the matrix  $M_1$  and the transformation  $T_2$  is represented by the matrix  $M_2$ 

The transformation  $T_1$  followed by  $T_2$  is represented by the matrix  $\mathbf{M}_2 \times \mathbf{M}_1$ 

### Exercises:

1. A rotation of 90° anticlockwise about *O* is represented by  $\mathbf{M} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ .

- (a) Find  $M^2$ . What transformation is represented by  $M^2$ ?
- (b) Find M3. What transformation is represented by M3?
- 2. Reflections in the x-axis, the y-axis and in the line y = x are given, respectively, by

$$\mathbf{L} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ \mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \mathbf{N} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Find  $L^2$ ,  $M^2$  and  $N^2$  and explain your results.

3. Describe the geometrical transformations represented by the matrices

(a) 
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, (b)  $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ , (c)  $\begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$ .

- 4. Show that the transformation represented by the matrix  $\mathbf{M} = \begin{bmatrix} a^2 & ab \\ ab & b^2 \end{bmatrix}$ , where a and b are constants, transforms all points onto a line. Find the equation of this line.
- 5. Write down matrices which represent the following transformations:
  - (a) reflection in  $y = x\sqrt{3}$ ,
  - (b) anticlockwise rotation of 30° about the origin,
  - (c) reflection in y = -x.

#### Formulae

#### Matrix transformations

Anticlockwise rotation through  $\theta$  about O:  $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ 

Reflection in the line  $y = (\tan \theta)x$ :  $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$ 

#### Answers:

- 1. (a)  $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ ; rotation of 180° about O
  - (b)  $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ ; rotation of 90° clockwise about O
- 2. Each squared matrix is the identity matrix  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ . The result of performing any reflection twice is to return all points to their original positions
- 3. (a) Identity all points stay fixed
  - (b) Zero all points map on to the origin
  - (c) A rotation of Atn $\left(\frac{4}{3}\right)$  and an enlargement of  $\times 5$ , both about the origin
- 4.  $x' = a^2x + aby$ ,  $y' = abx + b^2y \implies y' = \frac{b}{a}x'$ .
- 5. (a)  $\frac{1}{2}\begin{bmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$  (b)  $\frac{1}{2}\begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$  (c)  $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

#### Transformations in 3D

The matrix M representing a given linear transformation has columns given by the images of i, j, and k.



#### Meaning of the determinant

If Mis the matrix representing a transformation T

|det(M)| is the VOLUME SCALE FACTOR of the transformation

if  $det(\mathbf{M}) = 0$ , the image of all points belong to a unique line.

if  $det(\mathbf{M}) = 1$ , the volume is "conserved" through the transformation (for example: rotations)

if  $det(\mathbf{M}) = -1$ , the volume is "conserved" and the transformation T "involves" a reflection.

You should know the following transformation matrices:

| $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                      | Identity                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}, \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}, \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ | Rotations of $\theta^{\circ}$ about the $x$ -, $y$ - and $z$ -axes, respectively |
| $\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$                                                                                                                                                                                                                                    | Enlargement, scale factor $\lambda$                                              |
| $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$                                                                                                             | Reflections in the planes $x = 0$ , $y = 0$ and $z = 0$ respectively             |
| $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$                                                                                                                | Reflections in the planes $x = y$ , $y = z$ and $x = z$ respectively             |

The matrix **BA** represents the transformation **A** followed by the transformation **B** 



Write down the  $3\times3$  matrix that represents a rotation of 90° about the x-axis in the direction of y to z as shown in the diagram.

### To work out the matrix, map the vectors i, j and k

Through this transformation

$$i \rightarrow$$

$$\mathbf{j} \rightarrow \qquad \qquad so \ \mathbf{M} = \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix}$$

$$k \rightarrow$$

### Questions:

Find the matrices representing each of the following transformations.

- (i) Rotation of 90° about the x-axis.
- (ii) Reflection in the plane y = 0.
- (iii) Rotation of 180° about the y-axis
- (iv) Reflection in the plane x = z
- (v) Enlargement, centre the origin, scale factor 3.
- (vi) Rotation of 25° about the z-axis.

(i) Describe fully the transformations represented by

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- (ii) Find the matrix which represents C followed by A, and describe this transformation fully.
- (iii) Find the matrix which represents  ${\bf B}$  followed by  ${\bf C}$ , and describe this transformation fully.

#### Exercise:

(a) A transformation,  $T_1$ , of three dimensional space is given by  $\mathbf{r}' = \mathbf{M}\mathbf{r}$ , where

$$\mathbf{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{r}' = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} \quad \text{and} \quad \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Describe the transformation geometrically.

- (b) Two other transformations are defined as follows: T<sub>2</sub> is a reflection in the x-z plane, and T<sub>3</sub> is a rotation through 180° about the line x = 0, y + z = 0. By considering the image under each transformation of the points with position vectors i, j, k, or otherwise, find the matrix for each of T<sub>2</sub> and T<sub>3</sub>.
- (c) Determine the matrices for the combined transformations T<sub>3</sub> T<sub>1</sub> and T<sub>1</sub> T<sub>3</sub> and describe each of these transformations geometrically.

 $T_2T_1$  causes a totation of  $180^\circ$  about the z-axis;  $T_1T_3$  causes a totation of  $180^\circ$  about the  $\gamma$ 

$$\begin{bmatrix} 0 & 0 & I - \\ I - 0 & 0 \\ 0 & I - 0 \end{bmatrix} : ET : \begin{bmatrix} 0 & 0 & I \\ 0 & I - 0 \\ I & 0 & I \end{bmatrix} : £T : \begin{bmatrix} 0 & 0 & I \\ 0 & I - 0 \\ I & 0 & I \end{bmatrix} : £T (a)$$

(a) T<sub>1</sub>: a rotation through 90° about the x-axis such that the positive y-axis maps on to the
positive z-axis