Complex Numbers (continued)
L.O.:  To consider the roots of unity and discover some of their properties.

Starter:  Examination style question

a) Work out 
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b) If 
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, giving your answer in exponential form.

Recap:  
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Roots of unity

Example:  Find the fifth roots of unity.  Express your answers in the form 
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Solution:  We are asked to find the fifth roots of 1.

In modulus argument form:  1 = [1, 0]  or  [1, 2π]  or  [1, 4π]  or  [1, 6π]  or  [1, 8π].  

We wish to find z such that z5 = 1.

If z = [r, θ]   then  z5 = 
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= [1, 0]  or  [1, 2π]  or  [1, 4π]  or  [1, 6π]  or  [1, 8π].  

So we see that r = 1  and  5θ = 0  or  2π  or  4π  or  6π  or 8π



          i.e.     
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So the 5th roots of unity are 
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Some of the arguments are larger than π.  These can be put in the correct range by subtracting 2π.
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We get the following expressions for the 5th roots of unity:  
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Note: these roots form a regular pentagon when plotted on an Argand diagram.
Note 2:  With the exception of 1, these roots form conjugate pairs.

Note 3:  If 
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, then the 5th roots of unity can be expressed as 
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6th roots of unity

Example:  Find the 6th roots of unity, giving your answers in exponential form.

nth roots of unity
In general, the nth roots of unity can be expressed as 
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These roots form a regular n-sided polygon when plotted on an Argand diagram. 
General result:  
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Proof:  Using the formula for the sum of a Geometric Progression:
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    (using the fact that 
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 is an nth root of 1).
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