Arc length and area of surface of revolution about the x-axis

Specifications

Arc length and Area of surface of revolution about the x-axis

Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric coordinates.

Use of the following formulae will be expected:

$$s = \int_{x_1}^{x_2} \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^2 \right]^{\frac{1}{2}} \mathrm{d}x = \int_{t_1}^{t_2} \left[\left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right)^2 \right]^{\frac{1}{2}} \mathrm{d}t$$

$$S = 2\pi \int_{x_1}^{x_2} y \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^2 \right]^{\frac{1}{2}} \mathrm{d}x = 2\pi \int_{t_1}^{t_2} y \left[\left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right)^2 \right]^{\frac{1}{2}} \mathrm{d}t$$

These formulae are given

Introduction

Consider the graph with equation y=f(x) and two points A and B belonging to the curve.

The part of the curve between A and B is called an arc.

We want to work out the length of this arc.

Consider, on a very small scale an arc of this curve:ds

Using the pythagoras theorem,

$$(ds)^{2} = (dx)^{2} + (dy)^{2} \quad (\div (dx)^{2})$$

$$\left(\frac{ds}{dx}\right)^{2} = 1 + \left(\frac{dy}{dx}\right)^{2}$$

$$\frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}$$

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx \quad and \quad by \text{ integrating}$$

$$S = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Summary

If y = f(x), the length of the arc of curve from the point where x = a to the point where x = bis given by

$$s = \int_{a}^{b} \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}} \, \mathrm{d}x$$

Find the length of the curve $y = \cosh x$ between the points where x = 0 and x = 2.

Exercises:

Find the exact length of the arc on the parabola with equation $y = \frac{1}{2}x^2$, from the origin to the point P(4, 8).

- Find the length of the arc of the curve with equation $y = \frac{1}{3}x^{\frac{3}{2}}$, from the origin to the point with *x*-coordinate 12.
- The curve *C* has equation $y = \ln \cos x$. Find the length of the arc of *C* between the points with *x*-coordinates 0 and $\frac{\pi}{3}$.
- Find the length of the arc on the catenary, with equation $y = 2\cosh(\frac{x}{2})$, between the points with *x*-coordinates 0 and ln 4.
- The curve *C* has equation $y = \frac{1}{2}\sinh^2 2x$. Find the length of the arc on *C* from the origin to the point whose *x*-coordinate is 1, giving your answer to 3 significant figures.

The curve *C* has equation $y = \frac{1}{4}(2x^2 - \ln x)$, x > 0. The points *A* and *B* on *C* have *x*-coordinates 1 and 2 respectively. Show that the length of the arc from *A* to *B* is $\frac{1}{4}(6 + \ln 2)$.

3 $\frac{3}{3}$ or $18\frac{2}{3}$ or $\frac{3}{2}$

(.1.2) 28.0 &

Parametric equations

In parametric equations, x and y are functions of a parameter, usually t or θ . (the position of a point (x and y coordinates) depends on the time)

Examples:

$$x(t) = \cos(t)$$

$$y(t) = \frac{1}{2}t^2 \qquad t \ge$$

t	0	π	π	3π	2π	5π	3π	7π
		2		2		2		2
x								
У						Î		

1.	~-	1.	_	1
x(t)	= Sin	(t)	XC	os(t

$$y(t) = Cos(2t)$$

$$0 \le t \le \pi$$

Complete	the tab	e and ma	ark the po	int on the g	graph
t	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
×					

Length of arcs

The length of arc of a curve in terms of a parameter *t* is given by

$$s = \int_{t_1}^{t_2} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \, \mathrm{d}t,$$

where t_1 and t_2 are the values of the parameter at each end of the arc

The curve ${\cal C}$ has parametric equations

$$x = t + \frac{1}{t}$$
, $y = 2 \ln t$, $t > 0$

Find the length of the arc between points A and B with t = 1 and t = 2 respectively.

Exercises:

Calculate the length of the arc on the curve with parametric equations $x = \tanh u$, $y = \operatorname{sech} u$, between the points with parameters u = 0 and u = 1.

- The cycloid has parametric equations $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$. Find the length of the arc from $\theta = 0$ to $\theta = \pi$.
- Show that the length of the arc, between the points with parameters t=0 and $t=\frac{\pi}{3}$ on the curve defined by the equations $x=t+\sin t$, $y=1-\cos t$, is 2.
- Find the length of the arc of the curve given by the equations $x = e^t \cos t$, $y = e^t \sin t$, between the points with parameters t = 0 and $t = \frac{\pi}{4}$.

(.1.2 E) 93.1 to $[1 - \frac{\pi}{4}9] \overline{S}$

n4 21

(3.8 f) $60.0 \times 10^{-3} = 1.0 \times 10^{-3} = 1.0$

Area of surface of revolution

The area of surface of revolution obtained by rotating an arc of the curve y = f(x) through 2π radians about the x-axis between the points where x = a and x = b is given by

$$A = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}} \, \mathrm{d}x$$

In parametric form

$$S = 2\pi \int_{t_A}^{t_B} y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

the curve $y = \cosh x$ between the points where x = 0 and x = 2 is rotated through 2π radians about the x-axis

Find the area of surface of revolution

$$\pi \left[2 + \frac{1}{2}\sinh 4\right]$$

A curve has parametric representation

$$x = \theta + \sin \theta$$
, $y = 1 + \cos \theta$, $0 \le \theta \le 2\pi$.

- (a) Prove that $\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = 4\cos^2\frac{\theta}{2}$.
- (b) The arc of this curve, between the points when $\theta = 0$ and $\theta = \frac{\pi}{2}$ is rotated about the x-axis through 2π radians. The area of the surface generated is denoted by S. Determine the value of the constant k for which

$$S = k \int_0^{\frac{\pi}{2}} \left(1 - \sin^2 \frac{\theta}{2} \right) \cos \frac{\theta}{2} d\theta,$$

and hence evaluate S exactly.

- The arc of the curve $y = x^3$, between the origin and the point (1, 1), is rotated through 4 right-angles about the x-axis. Find the area of the surface generated.
- The arc of the curve $y = \frac{1}{2}x^2$, between the origin and the point (2, 2), is rotated through 4 right-angles about the *y*-axis. Find the area of the surface generated.
- The points A and B, in the first quadrant, on the curve $y^2 = 16x$ have x-coordinates 5 and 12 respectively. Find, in terms π , the area of the surface generated when the arc AB is rotated completely about the x-axis.
- **5** The curve C has equation $y = \cosh x$. The arc s on C, has end points (0, 1) and $(1, \cosh 1)$.
 - **a** Find the area of the surface generated when s is rotated completely about the x-axis.
 - **b** Show that the area of the surface generated when *s* is rotated completely about the *y*-axis is $2\pi \left(\frac{e-1}{e}\right)$.
- **6** The curve *C* has equation $y = \frac{1}{2x} + \frac{x^3}{6}$.
 - **a** Show that $\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} = \frac{1}{2}\left(x^2 + \frac{1}{x^2}\right)$.

The arc of the curve between points with x-coordinates 1 and 3 is rotated completely about the x-axis.

- **b** Find the area of the surface generated.
- The finite arc of the parabola with parametric equations $x = at^2$, y = 2at, where a is a positive constant, cut off by the line x = 4a, is rotated through 180° about the x-axis. Show that the area of the surface generated is $\frac{8}{3}\pi a^2(5\sqrt{5}-1)$.
- The arc, in the first quadrant, of the curve with parametric equations $x = \operatorname{sech} t$, $y = \tanh t$, between the points where t = 0 and $t = \ln 2$, is rotated completely about the x-axis. Show that the area of the surface generated is $\frac{2\pi}{5}$.
- The arc of the curve given by $x = 3t^2$, $y = 2t^3$, from t = 0 and t = 2, is completely rotated about the *y*-axis.
 - **a** Show that the area of the surface generated can be expressed as $36\pi \int_0^2 t^3 \sqrt{1+t^2} dt$.
 - b Using integration by parts, find the exact value of this area.
- The arc of the curve with parametric equations $x = t^2$, $y = t \frac{1}{3}t^3$, between the points where t = 0 and t = 1, is rotated through 360° about the *x*-axis. Calculate the area of the surface generated.
- **13** The astroid *C* has parametric equations $x = a\cos^3 t$, $y = a\sin^3 t$, where *a* is a positive constant. The arc of *C*, between $t = \frac{\pi}{6}$ and $t = \frac{\pi}{2}$, is rotated through 2π radians about the *x*-axis. Find the area of the surface of revolution formed.

$$[1 + \overline{8} \ | 25 \ | \frac{24\pi}{8} \ \mathbf{d}$$

$$= \frac{93\pi a^2}{8} \mathbf{\epsilon} \mathbf{I}$$

$$\frac{\pi}{8}$$
 $\frac{292}{8}$ $\frac{4}{8}$ $\frac{1}{8}$ $\frac{$

3
$$\frac{2\pi}{3}[5\sqrt{5}-1]$$

(.1.2 E) 32.E to
$$[1 - \overline{01} \lor 01] \frac{\pi}{72}$$
 2