Polar coordinates - Exam questions

Question: Jan 2007 Q2

A curve has polar equation $r(1 - \sin \theta) = 4$. Find its cartesian equation in the form y = f(x).

(6 marks)

Question: Jan 2007 Q7

A curve C has polar equation

$$r = 6 + 4\cos\theta, \qquad -\pi \leqslant \theta \leqslant \pi$$

The diagram shows a sketch of the curve C, the pole O and the initial line.

(a) Calculate the area of the region bounded by the curve C.

(6 marks)

(b) The point P is the point on the curve C for which $\theta = \frac{2\pi}{3}$.

The point Q is the point on C for which $\theta = \pi$.

Show that QP is parallel to the line $\theta = \frac{\pi}{2}$.

(4 marks)

(c) The line PQ intersects the curve C again at a point R.

The line RO intersects C again at a point S.

(i) Find, in surd form, the length of PS.

(4 marks)

(ii) Show that the angle OPS is a right angle.

(1 mark)

Question: June 2008 Q3

- (a) Show that $x^2 = 1 2y$ can be written in the form $x^2 + y^2 = (1 y)^2$. (1 mark)
- (b) A curve has cartesian equation $x^2 = 1 2y$.

Find its polar equation in the form $r = f(\theta)$, given that r > 0.

(5 marks)

The polar equation of a curve C is

$$r = 5 + 2\cos\theta$$
, $-\pi \le \theta \le \pi$

- (a) Verify that the points A and B, with **polar coordinates** (7,0) and $(3,\pi)$ respectively, lie on the curve C. (2 marks)
- (b) Sketch the curve C. (2 marks)
- (c) Find the area of the region bounded by the curve C. (6 marks)
- (d) The point P is the point on the curve C for which $\theta = \alpha$, where $0 < \alpha \le \frac{\pi}{2}$. The point Q lies on the curve such that POQ is a straight line, where the point Q is the pole. Find, in terms of α , the area of triangle OQB.

Question: Jan 2006 Q6

- (a) A circle C_1 has cartesian equation $x^2 + (y 6)^2 = 36$. Show that the polar equation of C_1 is $r = 12 \sin \theta$. (4 marks)
- (b) A curve C_2 with polar equation $r = 2\sin\theta + 5$, $0 \le \theta \le 2\pi$ is shown in the diagram.

Calculate the area bounded by C_2 .

(6 marks)

(c) The circle C_1 intersects the curve C_2 at the points P and Q. Find, in surd form, the area of the quadrilateral OPMQ, where M is the centre of the circle and O is the pole.

(6 marks)

Question: June 2009 Q3

The diagram shows a sketch of a circle which passes through the origin O.

The equation of the circle is $(x-3)^2 + (y-4)^2 = 25$ and OA is a diameter.

(a) Find the cartesian coordinates of the point A.

(2 marks)

- (b) Using O as the pole and the positive x-axis as the initial line, the polar coordinates of A are (k, α) .
 - (i) Find the value of k and the value of $\tan \alpha$.

(2 marks)

(ii) Find the polar equation of the circle $(x-3)^2 + (y-4)^2 = 25$, giving your answer in the form $r = p\cos\theta + q\sin\theta$. (4 marks)

Question: June 2009 Q7

The diagram shows the curve C_1 with polar equation

$$r = 1 + 6e^{-\frac{\theta}{\pi}}, \quad 0 \leqslant \theta \leqslant 2\pi$$

- (a) Find, in terms of π and e, the area of the shaded region bounded by C_1 and the initial line. (5 marks)
- (b) The polar equation of a curve C_2 is

$$r = e^{\frac{\theta}{\pi}}, \quad 0 \leqslant \theta \leqslant 2\pi$$

Sketch the curve C_2 and state the polar coordinates of the end-points of this curve.

(4 marks)

(c) The curves C_1 and C_2 intersect at the point P. Find the polar coordinates of P.

(5 marks)

Question: Jan 2010 Q8

The diagram shows a sketch of a curve C and a line L, which is parallel to the initial line and touches the curve at the points P and Q.

The polar equation of the curve C is

$$r = 4(1 - \sin \theta), \qquad 0 \le \theta < 2\pi$$

and the polar equation of the line L is

$$r \sin \theta = 1$$

- (a) Show that the polar coordinates of P are $\left(2, \frac{\pi}{6}\right)$ and find the polar coordinates of Q.
- (b) Find the area of the shaded region R bounded by the line L and the curve C. Give your answer in the form $m\sqrt{3} + n\pi$, where m and n are integers. (11 marks)

Question: Jan 2008 Q2

The diagram shows a sketch of part of the curve C whose polar equation is $r = 1 + \tan \theta$. The point O is the pole.

The points P and Q on the curve are given by $\theta = 0$ and $\theta = \frac{\pi}{3}$ respectively.

(a) Show that the area of the region bounded by the curve C and the lines OP and OQ is

$$\frac{1}{2}\sqrt{3} + \ln 2 \tag{6 marks}$$

(b) Hence find the area of the shaded region bounded by the line PQ and the arc PQ of C.

(3 marks)

Question: Jan 2008 Q6

A curve C has polar equation

$$r^2 \sin 2\theta = 8$$

- (a) Find the cartesian equation of C in the form y = f(x). (3 marks)
- (b) Sketch the curve C. (1 mark)
- (c) The line with polar equation $r = 2 \sec \theta$ intersects C at the point A. Find the polar coordinates of A. (4 marks)

Question: June 2007 Q4

- (a) Show that $(\cos \theta + \sin \theta)^2 = 1 + \sin 2\theta$. (1 mark)
- (b) A curve has cartesian equation

$$(x^2 + y^2)^3 = (x + y)^4$$

Given that $r \ge 0$, show that the polar equation of the curve is

(c) The curve with polar equation

$$r = 1 + \sin 2\theta, \quad -\pi \leqslant \theta \leqslant \pi$$

- is shown in the diagram.
- (i) Find the two values of θ for which r = 0. (3 marks)
- (ii) Find the area of one of the loops. (6 marks)

Polar coordinates – Exam questions

T-4-1	1	_
$y = \frac{x^2 - 16}{8}$	A1	6
$x^2 + y^2 = y^2 + 8y + 16$	A1F	
$x^2 + y^2 = (y+4)^2$	M1	
r = y + 4	A1	
r-y=4	B1	
$r - r \sin \theta = 4$	M1	
Question: Jan 2007 Q2		

Que	Total		6
(a)	Area = $\frac{1}{2}\int (6+4\cos\theta)^2 d\theta$	M1	
	$= \frac{1}{2} \left(\int_{-\pi}^{\pi} 36 + 48 \cos \theta + 16 \cos^2 \theta \right) d\theta$	B1 B1	
	$= \left(\int_{-\pi}^{\pi} 18 + 24\cos\theta + 4(\cos 2\theta + 1)\right) d\theta$	M1	
	$= \left[22\theta + 24\sin\theta + 2\sin 2\theta\right]_{-\pi}^{\pi}$	A1F	
	$=44\pi$	A1	6
(b)	At P , $r = 4$; At Q , $r = 2$;	B1	
	$P\{x=\} r \cos \theta = 4 \cos \frac{2\pi}{3} = -2$	M1	
	$Q\{x=\}\ r\cos\theta = 2\cos\pi = -2$	A1	
	Since P and Q have same 'x', PQ is vertical so QP is parallel to the vertical		
	line $\theta = \frac{\pi}{2}$	E1	4
)(i)	OP = 4; $OS = 8$;	B1	
	Angle $POS = \frac{\pi}{3}$	В1	
	$PS^2 = 4^2 + 8^2 - 2 \times 4 \times 8 \times \cos \frac{\pi}{3}$ oe	M1	
	$PS = \sqrt{48} \left\{ = 4\sqrt{3} \right\}$	A1	4
(ii)	Since $8^2 = 4^2 + \left(\sqrt{48}\right)^2$,	E1	1
	$OS^2 = OP^2 + PS^2 \Rightarrow OPS$ is a right angle. (Converse of Pythagoras Theorem)		
	Total		15

Question: June 2008 Q3

	Total		6
	$r > 0$ so $r = \frac{1}{1 + \sin \theta}$	A1	5
	$r=1-r\sin\theta$ or $r=-(1-r\sin\theta)$ $r(1+\sin\theta)=1$ or $r(1-\sin\theta)=-1$	m1	
	$x^{2} + y^{2} = r^{2}$ $y = r \sin \theta$ $x^{2} = 1 - 2y \text{ so } x^{2} + y^{2} = (1 - y)^{2}$ $\Rightarrow r^{2} = (1 - r \sin \theta)^{2}$	A1	
	$y = r \sin \theta$	M1	
(b)	$x^2 + y^2 = r^2$	M1	
(a)	$x^{2} + y^{2} = 1 - 2y + y^{2} \Rightarrow x^{2} + y^{2} = (1 - y)^{2}$	B1	1

Question: June 2008 Q8

(a)	$\theta = 0$, $r = 5 + 2\cos 0 = 7$ {A lies on C}	B1	
	$\theta = \pi$, $r = 5 + 2\cos \pi = 3$ {B lies on C}	В1	2

(c)	Area = $\frac{1}{2}\int (5+2\cos\theta)^2 d\theta$	M1	
	$= \frac{1}{2} \int_{-\pi}^{\pi} \left(25 + 20 \cos \theta + 4 \cos^2 \theta \right) d\theta$	B1 B1	
	$= \frac{1}{2} \int_{-\pi}^{\pi} (25 + 20\cos\theta + 2(\cos 2\theta + 1)) d\theta$	M1	
	$= \frac{1}{2} \left[27\theta + 20\sin\theta + \sin 2\theta \right]_{-\pi}^{\pi}$	A1F	
	$=27\pi$	A1	
(b)	Triangle OBO with		

	Total		14
	$=\frac{3}{2}(5-2\cos\alpha)\sin\alpha$	A1	4
	Area of triangle $OQB = \frac{1}{2}OB \times OQ \sin \alpha$	m1	
	$OQ = 5 + 2\cos(-\pi + \alpha)$	M1	
(d)	Triangle OBQ with $OB = 3$ and angle $BOQ = \alpha$	В1	
	$=27\pi$	A1	6

Qu	estion: Jan 2006 Q6		
(a)	$x^{2} + y^{2} - 12y + 36 = 36$ $r^{2} - 12r\sin\theta + 36 = 36$	M1 M1 m1	
	$\Rightarrow r = 12\sin\theta$	A1	4
(b)	Area = $\frac{1}{2}\int (2\sin\theta + 5)^2 d\theta$.	M1	
	$ = \frac{1}{2} \int_{0}^{2\pi} (4\sin^2\theta + 20\sin\theta + 25) d\theta$	B1 B1	
	$= \frac{1}{2} \int_{0}^{2\pi} (2(1 - \cos 2\theta) + 20\sin \theta + 25) d$	M1	
	$= \frac{1}{2} [27\theta - \sin 2\theta - 20\cos \theta]_0^{2\pi}$ $= 27\pi.$	A1√ A1	6
(c)	At intersection $12 \sin \theta = 2 \sin \theta + 5$	M1	
	$\Rightarrow \sin \theta = \frac{5}{10}$	A1	
	Points $\left(6, \frac{\pi}{6}\right)$ and $\left(6, \frac{5\pi}{6}\right)$ <i>OPMQ</i> is a rhombus of side 6	A1	
	Area = $6 \times 6 \times \sin \frac{2\pi}{3}$ oe = $18\sqrt{3}$	M1 A1	
	$= 18\sqrt{3}$	A1	6

Question: June 2009 Q3

	Centre of circle is $M(3, 4)$	B1	
	A(6, 8)	В1	2
)(i)	k = OA = 10	B1	
	$A(6, 8)$ $k = OA = 10$ $\tan \alpha = \frac{y_A}{x_A} = \frac{4}{3}$	B1	2
	$x^2 + y^2 - 6x - 8y + 25 = 25$	B1	
	$r^2 - 6r\cos\theta - 8r\sin\theta = 0$	M1M1	
	$\{r = 0, \text{ origin}\}\ \text{Circle: } r = 6\cos\theta + 8\sin\theta$	A1	4
	ALTn		
	Circle has eqn $r = OA \cos(\alpha - \theta)$	(M2)	
	$r = OA\cos\alpha\cos\theta + OA\sin\alpha\sin\theta$	(m1)	
	Circle: $r = 6\cos\theta + 8\sin\theta$	(A1)	

Total

Total

16

Total

14

Ouestion: Jan 2010 08

Qu	Question, Jan 2010 Qo				
(a)	$4\sin\theta(1-\sin\theta)=1$	M1			
	$4\sin^2\theta - 4\sin\theta + 1 = 0$	A1			
	$4\sin^2\theta - 4\sin\theta + 1 = 0$ $(2\sin\theta - 1)^2 = 0 \Rightarrow \sin\theta = 0.5$	m1			
	$\theta = \frac{\pi}{2}$, $\theta = \frac{5\pi}{2}$, $r = 2$	A2,1			

$$\theta = \frac{\pi}{6}, \quad \theta = \frac{5\pi}{6}, \quad r = 2$$

$$[P\left(2, \frac{\pi}{6}\right) \quad Q\left(2, \frac{5\pi}{6}\right)]$$
A2,1

b) Area triangle OPQ =
$$\frac{1}{2} \times 2 \times r_Q \times \sin POQ$$
 M1

Angle
$$POQ = \frac{5\pi}{6} - \frac{\pi}{6} \quad \left(= \frac{2\pi}{3} \right)$$
 m1

Area triangle
$$OPQ = 2\sin\frac{2\pi}{3} = \sqrt{3}$$
 A1
Unshaded area bounded by line OP and

arc
$$OP = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [4(1 - \sin \theta)]^2 d\theta$$

$$= 8 \int (1 - 2\sin\theta + \sin^2\theta) d\theta$$

$$= 8 \int (1 - 2\sin\theta + \frac{1 - \cos 2\theta}{2}) d\theta$$
M1

$$= 8 \left[\theta + 2 \cos \theta + \frac{\theta}{2} - \frac{\sin 2\theta}{4} \right] (+c)$$
 A1F

$$8\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1-\sin\theta)^2 d\theta =$$

$$8 \times \left[\frac{3\theta}{2} + 2\cos\theta - \frac{\sin 2\theta}{4} \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$$

$$= 8 \times \{ \frac{3\pi}{4} - \left(\frac{3\pi}{12} + 2\cos\frac{\pi}{6} - \frac{1}{4}\sin\frac{2\pi}{6} \right) \}$$
 m1

$$= 8 \times \left(\frac{\pi}{2} - \sqrt{3} + \frac{\sqrt{3}}{8}\right) \quad \{= 4\pi - 7\sqrt{3} \}$$
 A1F

Shaded area = Area of triangle
$$OPQ - 2 \times \frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left[4(1 - \sin \theta) \right]^2 d\theta$$

$$2 \times \frac{1}{2} \frac{1}{6} \left[4 \left(1 - \sin \theta\right)\right] d\theta$$

Shaded area =
$$\sqrt{3} - 16\left(\frac{\pi}{2} - \sqrt{3} + \frac{\sqrt{3}}{8}\right) = 15\sqrt{3} - 8\pi$$
 A1

Question: Ian 2009 Q2

5

11

M1

Qu	estion: Jan 2008 Q2		
(a)	Area = $\frac{1}{2} \int (1 + \tan \theta)^2 d\theta$	М1	
	$\dots = \frac{1}{2} \int (1 + 2 \tan \theta + \tan^2 \theta) d\theta$	В1	
	$= \frac{1}{2} \int (\sec^2 \theta + 2 \tan \theta) d\theta$	М1	
	$= \frac{1}{2} \left[\tan \theta + 2 \ln(\sec \theta) \right]^{\frac{\pi}{3}}$	A1√ B1√	
	$= \frac{1}{2} [(\sqrt{3} + 2 \ln 2) - 0] = \frac{\sqrt{3}}{2} + \ln 2$	A1	

(b)
$$OP = 1; OQ = 1 + \tan \frac{\pi}{3}$$
 B1
Shaded area =

'answer (a)' $-\frac{1}{2}OP \times OQ \times \sin(\frac{\pi}{3})$ M1

$$= \frac{\sqrt{3}}{2} + \ln 2 - \frac{\sqrt{3}}{4}(1 + \sqrt{3})$$
 A1
$$= \frac{\sqrt{3}}{4} + \ln 2 - \frac{3}{4}$$

Qu	estion: Jan 2008 Q6		
(a)	$r^2 2 \sin \theta \cos \theta = 8$	M1	
	$x = r \cos \theta$ $y = r \sin \theta$	M1	
	$xy = 4 , y = \frac{4}{x}$	A1	3
(b)	y x	B1	1

Total

	Total		8
	$r = \sqrt{8}$ (A1) OE surd		
	Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1)		
	and $\sin \theta$ only (M1) $\theta = \frac{\pi}{4}$ (A1)		
	Altn2: Eliminating r to reach eqn. in $\cos\theta$		
	$\theta = \frac{\pi}{4} \ ; r = \sqrt{8}$	A1	4
	$\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$	M1	
	$\Rightarrow \tan \theta = \frac{y}{y} = 1 \Rightarrow \theta = \frac{\pi}{4}$		
	In cartesian, $A(2, 2)$		
(-)	Sub $x = 2$ in $xy = 4 \implies 2y = 4$	M1	
(c)	$r=2 \sec \theta$ is $x=2$	В1	

	Total		14
	$=\frac{3\pi}{4}$	A1	6
	$= \left(\frac{9\pi}{16}\right) - \left(-\frac{3\pi}{16}\right)$	m1	
	$= \left[\frac{3}{4}\theta - \frac{1}{2}\cos 2\theta - \frac{1}{16}\sin 4\theta\right]$ $= \left[\frac{3}{4}\theta - \frac{1}{2}\cos 2\theta - \frac{1}{16}\sin 4\theta\right]_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}$ $= \left(\frac{9\pi}{16}\right) - \left(-\frac{3\pi}{16}\right)$ $= \frac{3\pi}{4}$ Total		
	$\begin{bmatrix} 4 & 2 & 16 \end{bmatrix}$	An	
	$= \left[\frac{3}{-\theta} - \frac{1}{-\cos 2\theta} - \frac{1}{-\sin 4\theta} \right]$	Alft	
	$= \frac{1}{2} \int \left(1 + 2\sin 2\theta + \frac{1}{2} \left(1 - \cos 4\theta \right) \right) d\theta$	M1	
	$= \frac{1}{2} \int (1 + 2\sin 2\theta + \sin^2 2\theta) d\theta$	В1	
(ii)	Area = $\frac{1}{2} \int (1 + \sin 2\theta)^2 d\theta$	M1	
	$\theta = -\frac{\pi}{4} \; ; \; \frac{3\pi}{4}$	AlAlft	3
	$2\theta = \sin^{-1}(-1); = -\frac{\pi}{2}, \frac{3\pi}{2}$	M1	
(i)	$r^{6} = r^{4} (\cos \theta + \sin \theta)^{4}$ $r^{6} = r^{4} (1 + \sin 2\theta)^{2}$ $r^{2} = (1 + \sin 2\theta)^{2}$ $\Rightarrow r = (1 + \sin 2\theta) \{r \ge 0\}$ $r = 0 \Rightarrow \sin 2\theta = -1$		
	$\Rightarrow r = (1 + \sin 2\theta) \{r \ge 0\}$	Al	4
	$r^6 = r^4 (1 + \sin 2\theta)^2$ $r^2 = (1 + \sin 2\theta)^2$	M1	
	$r^6 = r^4 (\cos \theta + \sin \theta)^4$		
	$(x^2 + y^2)^3 = (x + y)^4$ $(r^2)^3 = (r\cos\theta + r\sin\theta)^4$	M2,1,0	
(b)	$(x^2 + y^2)^3 = (x + y)^4$		
Qu (a)	estion: June 2007 Q4 $(\cos\theta + \sin\theta)^2 = \cos^2\theta + \sin^2\theta + 2\cos\theta\sin\theta$ $= 1 + \sin 2\theta$	В1	1