Hyperbolic functions

specifications

Hyperbolic Functions

Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration. The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions.

To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities.

Maximum level of difficulty:

$$\sinh(x+y) \equiv \sinh x \cosh y + \cosh x \sinh y$$
.

The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. <u>Proofs</u> of these results may also be required.

Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included.

Knowledge, proof and use of:

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$1 - \tanh^{2} x = \operatorname{sech}^{2} x$$

$$\coth^{2} x - 1 = \operatorname{cosech}^{2} x$$

Familiarity with the graphs of

 $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$.

Introduction

When studying the complex numbers chapter, we have established that

for all
$$\theta$$
, $Cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$
and $Sin\theta = \frac{e^{i\theta} - e^{i\theta}}{2i}$

These two functions have an equivalent in the real set of numbers

For all
$$x$$
,
$$\frac{e^x + e^{-x}}{2} = Cosh(x) \quad "read \cosh(x)"$$
$$\frac{e^x - e^{-x}}{2} = Sinh(x) \quad "read \sinh(x)"$$

Property 1:

For all x,
$$Cosh(x) + Sinh(x) = e^x$$

Prove it:

Properties and graphs

Cosh is an EVEN function

for all
$$x$$
, $Cosh(-x) = Cosh(x)$

Consequence: the graph of Cosh is symmetrical around the line x = 0

 $Sinh: \mathbb{R} \to \mathbb{R}$

$$x \to \frac{e^x - e^{-x}}{2}$$

Sinh is an ODD function

for all
$$x$$
, $Sinh(-x) = -Sinh(x)$

Consequence: the graph of *Cosh* is symmetrical around the origin
(Rotational order 2)

There are four other hyperbolic functions derived from these, just as there are four trigonometric functions. They are:

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\operatorname{cosech} x = \frac{1}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\coth x = \frac{1}{\tanh x}$$

'than x'

'cosheck x'

'sheck x'

'coth x'

 $Tanh: \mathbb{R} \rightarrow]-1,1[$

$$x \to \frac{Sinh(x)}{Cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

An other expression of tanh

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \times \frac{e^x}{e^x} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

Usual identities

You should know these identities and you need to be able to prove them using the exponential form of cosh and sinh.

$$Cosh^2(x) - Sinh^2(x) = 1$$

$$Sech^2(x) = 1 - Tanh^2(x)$$

$$\operatorname{Cosech}^{2}(x) = \operatorname{Coth}^{2}(x) - 1$$

Using the exponential form of these functions, prove the above identities

Other identities

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$

 $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$

 $\sinh 2x = 2 \sinh x \cosh x$ $\cosh 2x = \cosh^2 x + \sinh^2 x$ $= 2 \cosh^2 x - 1$ $= 1 + 2 \sinh^2 x$

Using the exponential expression of Cosh and Sinh, Prove the following identity

$$\sinh(x-y) = \sinh x \cosh y - \cosh x \sinh y$$

Show that $\cosh 3x = 4 \cosh^3 x - 3 \cosh x$.

Show that
$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$
.

Calculus

Differentiating hyperbolic functions

$$\bullet \frac{d}{dx} Cosh(x) = Sinh(x)$$

$$\bullet \frac{d}{dx} Sinh(x) = Cosh(x)$$

•
$$\frac{d}{dx} Cosh(x) = Sinh(x)$$

• $\frac{d}{dx} Sinh(x) = Cosh(x)$
• $\frac{d}{dx} Tanh(x) = 1 - Tanh^2 x = Sech^2 x$

$$\bullet \int Cosh(x)dx = Sinh(x) + c$$

•
$$\int Sinh(x)dx = Cosh(x) + c$$

•
$$\int Cosh(x)dx = Sinh(x) + c$$

• $\int Sinh(x)dx = Cosh(x) + c$
• $\int Tanh(x)dx = \int \frac{Sinh(x)}{Cosh(x)}dx = \ln(Cosh(x)) + c$

Proof of some of these results:

•
$$\frac{d}{dx}Tanh(x) = \frac{d}{dx}\left(\frac{Sinh(x)}{Cosh(x)}\right) = \frac{Cosh(x) \times Cosh(x) - Sinh(x) \times Sinh(x)}{Cosh^2x}$$

$$\frac{d}{dx}Tanh(x) = \frac{Cosh^{2}(x) - Sinh^{2}(x)}{Cosh^{2}x} = 1 - Tanh^{2}(x)$$

Differentiate the following expressions:

(a) $\cosh 3x$,

(b) $\cosh^2 3x$,

(c) $x^2 \cosh x$.

(d) $\frac{\cosh 2x}{x}$,

(e) $x \tanh x$,

(f) sech x [hint: write sech x as $(\cosh x)^{-1}$],

(g) cosech x.

Differentiate these functions with respect to x.

(a) $\cosh 4x$

(b) $\sinh 5x$

(c) $\sinh x \cosh x$

(d) $\sinh^2 x$

(e) $\sqrt{\cosh x}$

(f) $\ln(\sinh x + \cosh x)$

(g) $\frac{1}{\sinh x + 2\cosh x}$ (h) $\frac{1 + \sinh x}{x + \cosh x}$

(i) $\frac{\cosh x + \sin x}{\cos x + \sinh x}$

(i) $e^x \cosh x$

Find the following indefinite integrals.

(a)
$$\int \sinh 3x \, dx$$

(b) $\int \sinh x \cosh x \, dx$ (c) $\int \cosh^2 x \, dx$

(c)
$$\int \cosh^2 x \, dx$$

(d)
$$\int x \sinh x \, dx$$

(e) $\int x^2 \cosh 2x \, dx$ (f) $\int e^x \cosh x \, dx$

Evaluate the following definite integrals, correct to 3 significant figures.

(a)
$$\int_0^1 \cosh 4x \, dx$$

(b)
$$\int_0^{\ln 2} \sinh 4x \, dx$$

(b)
$$\int_0^{\ln 2} \sinh 4x \, dx$$
 (c) $\int_{-\ln 3}^{\ln 5} \cosh 2x \, dx$

(d)
$$\int_0^2 \sinh^2 x \, dx$$

(e)
$$\int_{1}^{2} x \cosh 2x \, dx$$

(d)
$$\int_0^2 \sinh^2 x \, dx$$
 (e) $\int_1^2 x \cosh 2x \, dx$ (f) $\int_0^1 \sinh^2 x \cosh x \, dx$

(e)
$$\frac{1}{4}e^{2x} + \frac{1}{2}x + \frac{1}{2}\sin 2x - \frac{1}{2}x\cos 2x + k$$

(d)
$$x \cos h x - \sinh x + k$$

(c)
$$\frac{1}{2}(\sinh x \cosh x + x) + k$$

(p)
$$\frac{1}{4} \cos y \, 2x + k$$

(g)
$$\frac{3}{1}$$
 cosp $3x + k$

(i)
$$\frac{2\cos x \sinh x}{\sin x + \cos x}$$

(h)
$$\frac{x \cos h x - 2 \sin h x}{x \cos h x^{3/2}}$$

(g)
$$-\frac{\cosh x + 2\sinh x}{(\sinh x + 2\cosh x)^2}$$

I (i)
$$\frac{x \text{ mins}}{2\sqrt{\cos x}}$$
 (b)

(c)
$$\cosh 2x$$
 (d) $2 \sinh x \cosh x$

$$\operatorname{sech}_{\Sigma}^{2}x$$
 (t) $-\operatorname{sech}_{X}\operatorname{taulp}_{X}$

(e)
$$\tanh x + x \operatorname{sech}^2 x$$

$$\frac{xz \operatorname{doo} - xz \operatorname{dnie} xz}{z_x}$$
 (b)

(c)
$$5x \cos \mu x + x^2 \sin \mu x$$

Inverse hyperbolic functions

$$Cosh^{-1}(x) = \operatorname{Arccosh}(x)$$
: $[1,+\infty) \to \mathbb{R}^+$
 $x \to y = Cosh^{-1}(x)$
with $x = \cosh(y)$

$$Sinh^{-1}(x) = Arcsinh(x)$$
: $\mathbb{R} \to \mathbb{R}$
 $x \to y = Sinh^{-1}(x)$
 $with \ x = Sinh(y)$

The logarithm expressions of the inv. hyp. functions

The log expressions are established using the following basic properties:

and

$$Cosh(y) + Sinh(y) = e^{y}$$
$$Cosh^{2}(y) - Sinh^{2}(y) = 1$$

For all
$$x$$
, $\sinh^{-1} x = \ln(x + \sqrt{1 + x^2})$.
For $x \ge 1$, $\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})$.

For
$$-1 < x < 1$$
, $\tanh^{-1} x = \frac{1}{2} \ln \frac{1+x}{1-x}$.

You need to be able to prove these identities

Proof:

$$y = Sinh^{-1}(x)$$
 means $Sinh(y) = x$

We are going to use these to properties

$$\bullet Cosh(y) + Sinh(y) = e^{y}$$

$$\bullet Cosh^2(y) - Sinh^2(y) = 1$$

$$Cosh(y) = \sqrt{1 + Sinh^2(y)}$$

$$so\ Cosh(y) + Sinh(y) = e^y \ becomes$$

$$\sqrt{1 + Sinh^2(y)} + Sinh(y) = e^y$$

$$\sqrt{1+x^2} + x = e^y$$
 and finally by composing by \ln

$$y = \ln\left(\sqrt{1+x^2} + x\right)$$

$$y = Tanh^{-1}(x)$$
 so $x = Tanh(y)$

We have established that
$$:Tanh(y) = \frac{e^{2y} - 1}{e^{2y} + 1} = x$$

By making e^{2y} the subject:

$$e^{2y}-1=x(e^{2y}+1)$$

$$(1-x)e^{2y} = 1+x$$

$$e^{2y} = \frac{1+x}{1-x}$$

$$2y = \ln\left(\frac{1+x}{1-x}\right) \qquad y = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$$

7 Express as natural logarithms.

a arsinh 2

b arcosh 3

c artanh $\frac{1}{2}$

8 Express as natural logarithms.

a arsinh $\sqrt{2}$

b $arcosh \sqrt{5}$

c artanh 0.1

9 Express as natural logarithms.

 \mathbf{a} arsinh (-3)

b arcosh $\frac{3}{2}$

c artanh $\frac{1}{\sqrt{3}}$

Given that artanh $x + \operatorname{artanh} y = \ln \sqrt{3}$, show that $y = \frac{2x-1}{x-2}$.

Preambule to solving equations

Cosh(x) = awith $a \ge 1$

with $a \in \mathbb{R}$ Sinh(x) = a

Tanh(x) = a with -1 < a < 1

is equivalent to:

 $x = \pm Cosh^{-1}(a)$

 $x = \pm \ln\left(a + \sqrt{a^2 - 1}\right)$

 $x = \ln\left(a \pm \sqrt{a^2 - 1}\right)$

is equivalent to:

 $x = Sinh^{-1}(a)$

 $x = \ln\left(a + \sqrt{1 + a^2}\right)$

is equivalent to: $x = Tanh^{-1}(a)$

$$\frac{1}{1} \int_{a}^{a} (1+a)^{a}$$

$$x = \frac{1}{2} \ln \left(\frac{1+a}{1-a} \right)$$

Solving equations involving hyperbolic functions

• Solve, for real values of x,

$$6 \sinh x - 2 \cosh x = 7$$

• Solve $2\cosh^2 x - 5\sinh x = 5$, giving your answers as natural logarithms.

• Solve $\cosh 2x - 5\cosh x + 4 = 0$, giving your answers as natural logarithms where appropriate.

Solve the following equations, giving your answers as natural logarithms.

- $1 \quad 3\sinh x + 4\cosh x = 4$
- $2 \quad 7 \sinh x 5 \cosh x = 1$
- 3 $30 \cosh x = 15 + 26 \sinh x$
- 4 $13 \sinh x 7 \cosh x + 1 = 0$
- $5 \quad \cosh 2x 5 \sinh x = 13$
- 6 $2 \tanh^2 x + 5 \operatorname{sech} x 4 = 0$
- $3 \sinh^2 x 13 \cosh x + 7 = 0$
- $8 \sinh 2x 7 \sinh x = 0$
- 9 $4 \cosh x + 13e^{-x} = 11$
- $10 \quad 2 \tanh x = \cosh x$

$$0 = x, (\frac{1}{\zeta}) \text{ if } = x \text{ I}$$

$$0 = x, (\frac{1}{\zeta}) \text{ if } = x \text{ I}$$

$$\varepsilon \text{ if } = x, (\frac{1}{\zeta}) \text{ if } = x \text{ I}$$

$$\varepsilon \text{ if } = x, (\frac{1}{\zeta}) \text{ if } = x \text{ I}$$

$$(\frac{\xi}{\zeta}) \text{ if } = x \text{ I}$$

$$\varepsilon \text{ if } = x, (\frac{\xi}{\zeta}) \text{ if } = x \text{ I}$$

$$\varepsilon \text{ if } = x, (\frac{\xi}{\zeta}) \text{ if } = x \text{ I}$$

$$\varepsilon \text{ if } = x, (\frac{\xi}{\zeta}) \text{ if } = x \text{ I}$$

$$(\frac{\xi}{\zeta}) \text{ if } = x, (\frac{\xi}{\zeta}) \text{ if } = x \text{ I}$$

$$(\frac{\xi}{\zeta}) \text{ if } = x, (\frac{\xi}{\zeta}) \text{ if } = x \text{ I}$$

Calculus of inverse hyperbolic functions

$$\bullet \frac{d}{dx} Cosh^{-1}(x) = \frac{1}{\sqrt{x^2 - 1}}$$

$$\bullet \int \frac{1}{\sqrt{x^2 - 1}} dx = Cosh^{-1}(x) + c$$

$$\bullet \frac{d}{dx} Sinh^{-1}(x) = \frac{1}{\sqrt{1+x^2}}$$

$$\bullet \frac{d}{dx} Tanh^{-1}(x) = \frac{1}{1-x^2}$$

$$\bullet \int \frac{1}{\sqrt{1+x^2}} dx = Sinh^{-1}(x) + c$$

$$\bullet \frac{d}{dx} Tanh^{-1}(x) = \frac{1}{1 - x^2}$$

$$\bullet \int \frac{1}{1-x^2} dx = Tanh^{-1}(x) + c$$

In formulae book

- 1. Differentiate the following:
- (a) $\tanh^{-1} \frac{x}{3}$, (b) $\sinh^{-1} \frac{x}{3}$, (c) $\cosh^{-1} \frac{x}{4}$,
- (d) $e^x \sinh^{-1} x$, (e) $\frac{1}{x} \cosh^{-1} x^2$.
- 2. If $y = x \cosh^{-1} x$, find $\frac{dy}{dx}$ when x = 2, giving your answer in the form $a + \ln b$, where a and b are irrational numbers.

2.
$$\frac{2\sqrt{3}}{5} + \ln\left(2 + \sqrt{3}\right)$$

1. (a)
$$\frac{3}{5-x^2}$$
 (b) $\frac{1}{\sqrt{1+x^2}}$ (c) $\frac{1}{\sqrt{x^4-16}}$ (d) $\frac{2}{x^4-16}$ (e) $\frac{1}{x^2} \cosh^{-1}x^2$ (f) $\frac{2}{x^4-16}$

1. Evaluate the following integrals:

(a)
$$\int \frac{\mathrm{d}x}{\sqrt{x^2+9}}$$

(b)
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - 16}}$$

(a)
$$\int \frac{dx}{\sqrt{x^2 + 9}}$$
, (b) $\int \frac{dx}{\sqrt{x^2 - 16}}$, (c) $\int \frac{dx}{\sqrt{4x^2 + 25}}$,

(d)
$$\int \frac{\mathrm{d}x}{\sqrt{9x^2 + 49}}$$

(e)
$$\int \frac{\mathrm{d}x}{\sqrt{(x+1)^2+4}}$$

(d)
$$\int \frac{dx}{\sqrt{9x^2 + 49}}$$
, (e) $\int \frac{dx}{\sqrt{(x+1)^2 + 4}}$, (f) $\int \frac{dx}{\sqrt{(x-2)^2 - 16}}$,

(g)
$$\int \frac{dx}{\sqrt{x^2 + 4x + 5}}$$
, (h) $\int \frac{dx}{\sqrt{x^2 - 2x - 2}}$.

(h)
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - 2x - 2}}$$

(a)
$$\sinh^{-1}\frac{x}{5} + c$$
 (b) $\cosh^{-1}\frac{x}{4} + c$ (c) $\sinh^{-1}\frac{x}{5} + c$ (d) $\sinh^{-1}\frac{x}{5} + c$ (e) $\sinh^{-1}\frac{x}{5} + c$ (f) $\cosh^{-1}\frac{x}{5} + c$ (g) $\sinh^{-1}\frac{x}{5} + c$ (h) $\cosh^{-1}\frac{x}{5} + c$ (g) $\sinh^{-1}\frac{x}{5} + c$