## Eigenvalues, Eigenvectors - exam questions

#### **Question 1: Jan 2006 - Q7**

The matrix 
$$\mathbf{M} = \begin{bmatrix} 1 & -1 & 1 \\ 3 & -3 & 1 \\ 3 & -5 & 3 \end{bmatrix}$$
.

- (a) Given that  $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$  and  $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$  are eigenvectors of  $\mathbf{M}$ , find the eigenvalues corresponding to  $\mathbf{u}$  and  $\mathbf{v}$ .
- (b) Given also that the third eigenvalue of  $\mathbf{M}$  is 1, find a corresponding eigenvector.

  (6 marks)
- (c) (i) Express the vector  $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$  in terms of  $\mathbf{u}$  and  $\mathbf{v}$ . (1 mark)
  - (ii) Deduce that  $\mathbf{M}^n \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \lambda^n \mathbf{u} + \mu^n \mathbf{v}$ , where  $\lambda$  and  $\mu$  are scalar constants whose values should be stated. (4 marks)
  - (iii) Hence prove that, for all positive **odd** integers n,

$$\mathbf{M}^{n} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2^{n} \\ 0 \\ 2^{n} \end{bmatrix}$$
 (3 marks)

#### Question 2: June 2006 - Q8

For real numbers a and b, with  $b \neq 0$  and  $b \neq \pm a$ , the matrix

$$\mathbf{M} = \begin{bmatrix} a & b+a \\ b-a & -a \end{bmatrix}$$

- (a) (i) Show that the eigenvalues of  $\mathbf{M}$  are b and -b. (3 marks)
  - (ii) Show that  $\begin{bmatrix} b+a\\b-a \end{bmatrix}$  is an eigenvector of **M** with eigenvalue b. (2 marks)
  - (iii) Find an eigenvector of  $\mathbf{M}$  corresponding to the eigenvalue -b. (2 marks)
- (b) By writing  $\mathbf{M}$  in the form  $\mathbf{U}\mathbf{D}\mathbf{U}^{-1}$ , for some suitably chosen diagonal matrix  $\mathbf{D}$  and corresponding matrix  $\mathbf{U}$ , show that

$$\mathbf{M}^{11} = b^{10}\mathbf{M} \tag{7 marks}$$

#### Question 3: Jan 2007 - Q6

(a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$$
 (6 marks)

(b) (i) Write down a diagonal matrix **D**, and a suitable matrix **U**, such that

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1} \tag{2 marks}$$

- (ii) Write down also the matrix  $U^{-1}$ . (1 mark)
- (iii) Use your results from parts (b)(i) and (b)(ii) to determine the matrix  $X^5$  in the form  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , where a, b, c and d are integers. (3 marks)

#### **Question 4: June 2007 - Q7**

- (a) The matrix  $\mathbf{M} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$  represents a shear.
  - (i) Find det M and give a geometrical interpretation of this result. (2 marks)
  - (ii) Show that the characteristic equation of **M** is  $\lambda^2 2\lambda + 1 = 0$ , where  $\lambda$  is an eigenvalue of **M**. (2 marks)
  - (iii) Hence find an eigenvector of **M**. (3 marks)
  - (iv) Write down the equation of the line of invariant points of the shear. (1 mark)
- (b) The matrix  $S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  represents a shear.
  - (i) Write down the characteristic equation of S, giving the coefficients in terms of a, b, c and d. (2 marks)
  - (ii) State the numerical value of  $\det S$  and hence write down an equation relating a, b, c and d. (2 marks)
  - (iii) Given that the only eigenvalue of S is 1, find the value of a + d. (2 marks)

#### **Question 5: Jan 2008 - Q4**

The matrix **T** has eigenvalues 2 and -2, with corresponding eigenvectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$  and  $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$  respectively.

- (a) Given that  $\mathbf{T} = \mathbf{U} \mathbf{D} \mathbf{U}^{-1}$ , where  $\mathbf{D}$  is a diagonal matrix, write down suitable matrices  $\mathbf{U}$ ,  $\mathbf{D}$  and  $\mathbf{U}^{-1}$ .
- (b) Hence prove that, for all **even** positive integers n,

$$\mathbf{T}^n = \mathbf{f}(n) \mathbf{I}$$

where f(n) is a function of n, and I is the 2  $\times$  2 identity matrix. (5 marks)

#### Question 6: Jan 2008 - Q7

The non-singular matrix  $\mathbf{M} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ .

(a) (i) Show that

$$\mathbf{M}^2 + 2\mathbf{I} = k\mathbf{M}$$

for some integer k to be determined.

(3 marks)

(ii) By multiplying the equation in part (a)(i) by  $M^{-1}$ , show that

$$\mathbf{M}^{-1} = a\mathbf{M} + b\mathbf{I}$$

for constants a and b to be found.

(3 marks)

- (b) (i) Determine the characteristic equation of **M** and show that **M** has a repeated eigenvalue, 1, and another eigenvalue, 2. (6 marks)
  - (ii) Give a full set of eigenvectors for each of these eigenvalues. (5 marks)
  - (iii) State the geometrical significance of each set of eigenvectors in relation to the transformation with matrix **M**. (3 marks)

#### **Question 7: June 2008 - Q1**

Find the eigenvalues and corresponding eigenvectors of the matrix  $\begin{bmatrix} 7 & 12 \\ 12 & 0 \end{bmatrix}$ . (6 marks)

#### Question 8: June 2008 - Q5

A plane transformation is represented by the  $2 \times 2$  matrix **M**. The eigenvalues of **M** are 1 and 2, with corresponding eigenvectors  $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$  respectively.

- (a) State the equations of the invariant lines of the transformation and explain which of these is also a line of invariant points. (3 marks)
- (b) The diagonalised form of M is  $M = UDU^{-1}$ , where D is a diagonal matrix.
  - (i) Write down a suitable matrix **D** and the corresponding matrix **U**. (2 marks)
  - (ii) Hence determine **M**. (4 marks)
  - (iii) Show that  $\mathbf{M}^n = \begin{bmatrix} 1 & f(n) 1 \\ 0 & f(n) \end{bmatrix}$  for all positive integers n, where f(n) is a function of n to be determined. (3 marks)

#### Question 9: Jan 2009 - Q4

- (a) Given that -1 is an eigenvalue of the matrix  $\mathbf{M} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix}$ , find a corresponding eigenvector.
- (b) Determine the other two eigenvalues of **M**, expressing each answer in its simplest surd form. (8 marks)

# **Eigenvalues, Eigenvectors – exam questions MS**

|                                                                                                                                                                                                             | Eigenva         | lue |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|
| Question 1: Jan 2006 - Q7                                                                                                                                                                                   |                 |     |
| 7(a) $\mathbf{M} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}, \mathbf{M} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$ | M1<br>A1 A1     |     |
| $\Rightarrow \lambda_{\rm U} = 2 \Rightarrow \lambda_{\rm V} = -2$                                                                                                                                          | B1 B1√          | 5   |
| (b) $\mathbf{M} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a-b+c \\ 3a-3b+c \\ 3a-5b+3c \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$                                         | M1<br>A1<br>dM1 |     |
| $\Rightarrow$ b = c and $3a + c = 4b$                                                                                                                                                                       | A1 A1           |     |
| Evec. is any non-zero multiple of $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$                                                                                                                                   | A1              | 6   |
| c)(i) $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \mathbf{u} + \mathbf{v}  \text{or}  \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$                               | B1              | 1   |
| (ii) $\mathbf{M}^n \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \mathbf{M}^n (\mathbf{u} + \mathbf{v}) = \mathbf{M}^n \mathbf{u} + \mathbf{M}^n \mathbf{v}$                                                  | M1<br>A1        |     |
| $=2^{n}\mathbf{u}+(-2)^{n}\mathbf{v}$                                                                                                                                                                       | M1<br>A1        | 4   |
| (iii) $\mathbf{M}^{n} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2^{n} \\ 2^{n} \\ 2 \times 2^{n} \end{bmatrix} - \begin{bmatrix} 0 \\ 2^{n} \\ 2^{n} \end{bmatrix}$                       | M1<br>B1        |     |
| $= \begin{bmatrix} 2^n \\ 0 \\ 2^n \end{bmatrix}$                                                                                                                                                           | A1              | 3   |
| Question 2: June 2006 – Q8 (a)(i)   Char. Equation is $\lambda^2 - 0\lambda + \{-a^2 - (b^2 - a^2)\} = 0$ i.e. $\lambda^2 - b^2 = 0$ and $\lambda = \pm b$                                                  | M<br>A          |     |

| Stion 2. June 2000 – Qo                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                           | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\lambda^2 - 0\lambda + \{-a^2 - (b^2 - a^2)\} = 0$                                                                                                       | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| i.e. $\lambda^2 - h^2 = 0$                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                           | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 1 1 2                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\Rightarrow y = \frac{b-a}{b+a}x \Rightarrow \text{evecs. } \alpha \begin{vmatrix} b+a \\ b-a \end{vmatrix}$                                             | Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\lambda = -b \implies (a+b)y + (a+b)y = 0 \text{ (etc.)}$                                                                                                | Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\Rightarrow y = -x \Rightarrow \text{ evecs. } \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix}$                                                              | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\mathbf{D} = \begin{bmatrix} b & 0 \\ 0 & -b \end{bmatrix}, \ \mathbf{U} = \begin{bmatrix} b + a & 1 \\ b - a & -1 \end{bmatrix}$                        | B1 B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _1[ =1 =1 ]                                                                                                                                               | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| and $U^{-1} = \frac{-1}{2h} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$                                                                         | Bl√                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20 [ u - 0                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [ A <sup>11</sup> 0 ]                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\mathbf{D}^{11} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$                                                                                          | Bl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| r , , 1                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $M'' = U D'' U^{-1}$ used                                                                                                                                 | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| . [2 1][ 1                                                                                                                                                | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\mathbf{M}^{11} = \frac{1}{2} b^{10} \begin{vmatrix} b+a & 1 \\ 1 & 1 \end{vmatrix} = \frac{1}{2} b^{10} \begin{vmatrix} b+a & 1 \\ 1 & 1 \end{vmatrix}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 [b-a -1][a-b a+b]                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 [54 ] -17[ 1 1 ]                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| or $\frac{1}{2}b^{10} \begin{bmatrix} b & a & -1 \\ b & -1 & -1 \end{bmatrix}$                                                                            | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $1 \dots \begin{bmatrix} 2a & 2(a+b) \end{bmatrix} \dots$                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $=\frac{1}{2}b^{10}\begin{vmatrix} 2(b-a) & -2a \end{vmatrix} = b^{10} M$                                                                                 | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $ \mathbf{M} ^{b+a} _{- ab+a^2+b^2-a^2 =b^{b+a} $                                                                                                         | Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\lfloor b-a \rfloor \lfloor b^2-a^2-ab+a^2 \rfloor \lfloor b-a \rfloor$                                                                                  | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Alternative to (b)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NB $D^{11} = b^{10} D$                                                                                                                                    | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Then $\mathbf{M}^{11} = \mathbf{U} \mathbf{D}^{11} \mathbf{U}^{-1}$                                                                                       | M2 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $=b^{10} \mathbf{U} \mathbf{D} \mathbf{U}^{-1} = b^{10} \mathbf{M}$                                                                                       | M2 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                           | Char. Equation is $\lambda^{2} - 0\lambda + (-a^{2} - (b^{2} - a^{2})) = 0$ i.e. $\lambda^{2} - b^{2} = 0$ and $\lambda = \pm b$ $\lambda = b \Rightarrow (a - b)x + (a + b)y = 0$ $\Rightarrow y = \frac{b - a}{b + a}x \Rightarrow \text{ evecs. } \alpha \begin{bmatrix} b + a \\ b - a \end{bmatrix}$ $\lambda = -b \Rightarrow (a + b)x + (a + b)y = 0 \text{ (etc.)}$ $\Rightarrow y = -x \Rightarrow \text{ evecs. } \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\mathbf{D} = \begin{bmatrix} b & 0 \\ 0 & -b \end{bmatrix},  \mathbf{U} = \begin{bmatrix} b + a & 1 \\ b - a & -1 \end{bmatrix}$ and $\mathbf{U}^{-1} = \frac{-1}{2b} \begin{bmatrix} -1 & -1 \\ a - b & a + b \end{bmatrix}$ $\mathbf{D}^{11} = \begin{bmatrix} b^{11} & 0 \\ 0 & -b^{11} \end{bmatrix}$ $\mathbf{M}^{n} = \mathbf{U} \mathbf{D}^{n} \mathbf{U}^{-1} \text{ used}$ $\mathbf{M}^{11} = \frac{1}{2}b^{10} \begin{bmatrix} b + a & 1 \\ b - a & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ a - b & a + b \end{bmatrix}$ or $\frac{1}{2}b^{10} \begin{bmatrix} b + a & -1 \\ b - a & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ b - a & -a - b \end{bmatrix}$ $= \frac{1}{2}b^{10} \begin{bmatrix} 2a & 2(a + b) \\ 2(b - a) & -2a \end{bmatrix} = b^{10} \mathbf{M}$ Alternative to (a)(ii) $\mathbf{M} \begin{bmatrix} b + a \\ b - a \end{bmatrix} = \begin{bmatrix} ab + a^{2} + b^{2} - a^{2} \\ b^{2} - a^{2} - ab + a^{2} \end{bmatrix} = b \begin{bmatrix} b + a \\ b - a \end{bmatrix}$ Alternative to (b) $\mathbf{NB} \mathbf{D}^{11} = b^{10} \mathbf{D}$ Then $\mathbf{M}^{11} = \mathbf{U} \mathbf{D}^{11} \mathbf{U}^{-1}$ $= b^{10} \mathbf{U} \mathbf{D} \mathbf{U}^{-1} = b^{10} \mathbf{M}$ | Char. Equation is $\lambda^2 - 0\lambda + (-a^2 - (b^2 - a^2)) = 0$ i.e. $\lambda^2 - 0\lambda + (-a^2 - (b^2 - a^2)) = 0$ and $\lambda = \pm b$ A1 $\lambda = b \Rightarrow (a - b)x + (a + b)y = 0$ M1 $\Rightarrow y = \frac{b - a}{b + a}x \Rightarrow \text{ evecs. } a \begin{bmatrix} b + a \\ b - a \end{bmatrix}$ A1 $\lambda = -b \Rightarrow (a + b)x + (a + b)y = 0$ (etc.) M1 $\Rightarrow y = -x \Rightarrow \text{ evecs. } \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ A1 $b = \begin{bmatrix} b & 0 \\ 0 & -b \end{bmatrix}, \ U = \begin{bmatrix} b + a & 1 \\ b - a & -1 \end{bmatrix}$ B1 B1 B1 $b = 0$ B1 B1 B1 B1 $b = 0$ B1 B1 B1 B1 $b = 0$ B1 B1 B1 B1 $b = 0$ B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 |

|          | _  | _   |      |        | _ |
|----------|----|-----|------|--------|---|
| Question | ₹. | lan | 2007 | ' - 06 | ÷ |

| 6(a)  | Char. Eqn. is $\lambda^2 - 5\lambda - 6 = 0$                                                                                               | B1    |   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|---|
|       | Solving $\Rightarrow \lambda = -1$ or 6                                                                                                    | M1 A1 |   |
|       | Subst <sup>g</sup> . either λ back                                                                                                         | M1    |   |
|       | $\lambda = -1 \implies x + y = 0 \implies \text{evecs. } \alpha \begin{bmatrix} 1 \\ -1 \end{bmatrix}$                                     | A1    |   |
|       | $\lambda = 6 \implies 5x - 2y = 0 \implies \text{evecs. } \beta \begin{bmatrix} 2 \\ 5 \end{bmatrix}$                                      | A1    | 6 |
| b)(i) | $\begin{bmatrix} -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \end{bmatrix}$                                                               | B1F   |   |
|       | $\mathbf{D} = \begin{bmatrix} -1 & 0 \\ 0 & 6 \end{bmatrix} \qquad \mathbf{U} = \begin{bmatrix} 1 & 2 \\ -1 & 5 \end{bmatrix}$             | B1F   | 2 |
|       | [د م]                                                                                                                                      |       |   |
| (ii)  | $\mathbf{U}^{-1} = \frac{1}{7} \begin{bmatrix} 5 & -2 \\ 1 & 1 \end{bmatrix}$ $\mathbf{X}^{5} = \mathbf{U} \mathbf{D}^{5} \mathbf{U}^{-1}$ | B1F   | 1 |
| (iii) | $\mathbf{X}^5 = \mathbf{U} \mathbf{D}^5 \mathbf{U}^{-1}$                                                                                   | M1    |   |
| ` '   | $=\frac{1}{7}\begin{bmatrix}1&2\\-1&5\end{bmatrix}\begin{bmatrix}-1&0\\0&6^5\end{bmatrix}\begin{bmatrix}5&-2\\1&1\end{bmatrix}$            | B1F   |   |

# Question 4: June 2007 – Q7

| (a)(i) | $\det \mathbf{M} = 1 \implies \mathbf{area} \text{ invariant}$                 | B1B1  | 2   |
|--------|--------------------------------------------------------------------------------|-------|-----|
| (ii)   | $\lambda^2 - (\text{trace } \mathbf{M})\lambda + (\text{det } \mathbf{M}) = 0$ | M1    |     |
| , ,    |                                                                                | A1    | 2   |
| (iii)  | $\lambda = 1 \text{ subst}^d$ . back $\Rightarrow -2x + 2y = 0$                | M1 A1 |     |
|        | and evec. is $\alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix}$                     | A1    | 3   |
| (iv)   | $y = x$ (since $\lambda = 1$ ) or vector eqn.                                  | B1    | 1   |
|        |                                                                                |       |     |
| (b)(i) | $\lambda^2 - (a+d)\lambda + (ad-bc) = 0$                                       | B1 B1 | 2   |
| (ii)   | $\det \mathbf{S} = 1$                                                          | B1    |     |
|        | $\Rightarrow ad - bc = 1$                                                      | B1√   | 2   |
| (iii)  | $\lambda$ =1 twice gives Char. Eqn. $\lambda^2 - 2\lambda + 1 = 0$             | M1    |     |
|        | $\Rightarrow a+d=2$                                                            | A1    | 2   |
|        | <b>Or</b> Subst <sup>g</sup> . $\lambda = 1$ in Char. Eqn.                     |       |     |
|        | $\Rightarrow 1 - (a+d) + (ad-bc) = 0$                                          | (M1)  |     |
|        | and $ad - bc = 1 \implies a + d = 2$                                           | (A1)  | (2) |
|        | Total                                                                          |       | 14  |

A1

# Question 5: Jan 2008 – Q4

| (a) | $\mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}, \ \mathbf{U} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix},$                                    | B1B1     |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|     | $\mathbf{U}^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$                                                                                            | B1       | 3   |
| (b) | $\mathbf{T}^n = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2^n & 0 \\ 0 & 2^n \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$ | B1<br>M1 |     |
|     | $= \begin{bmatrix} 2^n & 2 \times 2^n \\ 2^n & 3 \times 2^n \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$                                     | m1       |     |
|     | $\begin{bmatrix} 2^n & 3 \times 2^n \end{bmatrix} \begin{bmatrix} -1 & 1 \end{bmatrix}$                                                                       | A1       |     |
|     | or $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 3 \times 2^n & -2 \times 2^n \\ -2^n & 2^n \end{bmatrix}$                                    |          |     |
|     | $=2^n \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$                                                                                                           | A1       | 5   |
|     | Alternative for (b):                                                                                                                                          |          |     |
|     |                                                                                                                                                               | (= a)    |     |
|     | $\mathbf{D}^n = \begin{bmatrix} 2^n & 0 \\ 0 & 2^n \end{bmatrix}$                                                                                             | (B1)     |     |
|     | $\mathbf{T}^n = \mathbf{U} \ (2^n \ \mathbf{I}) \ \mathbf{U}^{-1}$                                                                                            | (M1)     |     |
|     | $=2^{n}\left(\mathbf{U}\mathbf{I}\mathbf{U}^{-1}\right)$                                                                                                      | (m2)     | (5) |
|     | $=2^n$ I                                                                                                                                                      | (A1)     | (5) |
|     | Total                                                                                                                                                         |          | 8   |

| Que            | stion 6: Jan 2008 – Q7                                                                                                                                                                                                                                          |            |    |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| (i)(i)         | $\mathbf{M}^2 = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$                                                                                                        | MI         |    |
| # <b>/</b> (1) | $\begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$                                                                                                                                                                             | 1411       |    |
|                | $ = \begin{bmatrix} 4 & -3 & 3 \\ 3 & -2 & 3 \\ 3 & -3 & 4 \end{bmatrix} $                                                                                                                                                                                      |            |    |
|                | = 3 -2 3 3 4                                                                                                                                                                                                                                                    | A1         |    |
|                | [4 -3 3] [2 0 0]                                                                                                                                                                                                                                                |            |    |
|                | $\mathbf{M}^2 + 2\mathbf{I} = \begin{vmatrix} 3 & -2 & 3 \\ 2 & 2 & 4 \end{vmatrix} + \begin{vmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix}$                                                                                                                     |            |    |
|                | [3 -3 4] [0 0 2]<br>[6 -3 3]                                                                                                                                                                                                                                    |            |    |
|                | $\mathbf{M}^{2} + 2\mathbf{I} = \begin{bmatrix} 4 & -3 & 3 \\ 3 & -2 & 3 \\ 3 & -3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $= \begin{bmatrix} 6 & -3 & 3 \\ 3 & 0 & 3 \\ 3 & -3 & 6 \end{bmatrix} = 3\mathbf{M}$ | A1         | 3  |
|                | [3 -3 6]                                                                                                                                                                                                                                                        |            |    |
| (ii)           | Multiplying by $M^{-1}$ to get $M + 2M^{-1} = 3I$                                                                                                                                                                                                               | MI<br>Al   |    |
|                | so that $M^{-1} = \frac{3}{2}I - \frac{1}{2}M$                                                                                                                                                                                                                  | Al         | 3  |
| b)(i)          | Char. eqn. is $\lambda^3 - 4\lambda^2$                                                                                                                                                                                                                          | MlAl       |    |
|                | $+5\lambda - 2 = 0$<br>ie $(\lambda - 2)(\lambda - 1)^2 = 0$                                                                                                                                                                                                    | AlAl<br>Ml |    |
|                | giving $\lambda_1 = 1$ (twice) and $\lambda_2 = 2$                                                                                                                                                                                                              | Al         | 6  |
| (ii)           | $\lambda = 1 \implies x - y + z = 0$ (thrice)<br>Any two independent eigenvectors                                                                                                                                                                               | B1<br>M1   |    |
|                | Г17 Г07                                                                                                                                                                                                                                                         | IVII       |    |
|                | (eg) $\alpha \begin{vmatrix} 1 \\ 0 \end{vmatrix} + \beta \begin{vmatrix} 1 \\ 1 \end{vmatrix}$                                                                                                                                                                 | A1         |    |
|                | $\lambda = 2 \implies -y + z = 0$                                                                                                                                                                                                                               |            |    |
|                | $x - 2y + z = 0 \implies x = y = z$ $x - y = 0$                                                                                                                                                                                                                 | M1         |    |
|                | [1]<br>γ[1]                                                                                                                                                                                                                                                     | 4.1        | 5  |
|                |                                                                                                                                                                                                                                                                 | Al         | 3  |
| (iii)          | For $\lambda = 1$ , eigenvectors represent a plane                                                                                                                                                                                                              | Mi         |    |
| . /            | of invariant points                                                                                                                                                                                                                                             | A1         |    |
|                | For $\lambda = 2$ , eigenvectors represent an invariant line                                                                                                                                                                                                    | B1         | 3  |
|                | Total                                                                                                                                                                                                                                                           |            | 20 |

### **Question 7: June 2008 – Q1**

|   | Total                                                             |    | 6 |
|---|-------------------------------------------------------------------|----|---|
|   | $\Rightarrow$ evecs $\beta \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ | A1 | 6 |
|   | $\lambda = -9 \implies 16x + 12y = 0 \implies y = -\frac{4}{3}x$  |    |   |
|   | $\Rightarrow$ evecs $\alpha \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ | A1 |   |
|   | $\lambda = 16 \implies -9x + 12y = 0 \implies y = \frac{3}{4}x$   | M1 |   |
|   | $\lambda = 16 \text{ or } -9$                                     | A1 |   |
|   | Solving quadratic to find evals                                   | M1 |   |
| 1 | Attempt at char eqn $\lambda^2 - 7\lambda - 144 = 0$              | M1 |   |

| Que          | stion 8: June 2008 – Q5                                                                                                                                                                               |                          |    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----|
| <b>5</b> (a) | y = 0 (or "x-axis") and $y = x$                                                                                                                                                                       | B1,B1                    |    |
|              | $y = 0$ is a line of invariant points since $\lambda = 1$                                                                                                                                             | B1                       | 3  |
| b)(i)        | $\mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix},  \mathbf{U} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},$                                                                              | B1,B1                    | 2  |
| (ii)         | $\mathbf{U}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$                                                                                                                                     | B1                       |    |
|              | $\mathbf{M} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$                                                | M1                       |    |
|              | $= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ | A1                       |    |
|              | $= \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$                                                                                                                                                      | A1                       | 4  |
| (iii)        | $\mathbf{D}^n = \begin{bmatrix} 1 & 0 \\ 0 & 2^n \end{bmatrix}$                                                                                                                                       | B1                       |    |
|              | $\mathbf{M}^n = \mathbf{U} \ \mathbf{D}^n \ \mathbf{U}^{-1}$                                                                                                                                          | M1                       |    |
|              | $= \begin{bmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{bmatrix}$                                                                                                                                              | A1                       | 3  |
| 0            | Total                                                                                                                                                                                                 |                          | 12 |
| Que<br>4(a)  | stion 9: Jan 2009 – Q4<br>Subst <sup>g</sup> . $\lambda = -1$ into $det(\mathbf{M} - \lambda \mathbf{I}) = 0$                                                                                         | M1                       |    |
|              | Solving between $x + y + z = 0$<br>and $x + y + 2z = 0$                                                                                                                                               | dM1                      |    |
|              | Eigenvector(s) $\alpha \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$                                                                                                                                    | A1                       | 3  |
| (b)          | Attempt at Char. Eqn.<br>$\lambda^3 - 5\lambda^2 - 5\lambda + 1 = 0$<br>Use of division/factor theorem etc.<br>$(\lambda + 1)(\lambda^2 - 6\lambda + 1)$                                              | M1<br>A1 × 3<br>M1<br>A1 |    |
|              | Solving remaining quadratic factor                                                                                                                                                                    | M1                       |    |