Complex numbers

Specifications:

Complex Numbers

The Cartesian and polar coordinate forms of a complex number, its modulus, argument and conjugate. The sum, difference, product and quotient of two complex numbers.

The representation of a complex number by a point on an Argand diagram; geometrical illustrations.

Simple loci in the complex plane.

$$x+iy$$
 and $r(\cos\theta+i\sin\theta)$.

The parts of this topic also included in module Further Pure 1 will be examined only in the context of the content of this module.

For example,
$$|z-2-i| \le 5$$
, $\arg(z-2) = \frac{\pi}{3}$

Maximum level of difficulty |z-a| = |z-b| where a and b are complex numbers.

Modulus and argument

Consider a complex number z = x+iy

Argand diagram:

There is a natural relationship between any complex z=x+iy and the point P with coordinates (x,y)

If a complex number z = x + iy,

We can represent z in an Argand diagram by the point P(x, y).

By definition

Modulus of $z = |z| = \sqrt{x^2 + y^2} = OP$ Argument of $z = \arg(z) = \theta = \operatorname{angle}(\widehat{ox}, \widehat{OP})$ (usually, $-\pi < \theta \le \pi$)

Polar form of a complex number

z = x+iy is the CARTESIAN form of the complex number

If
$$z = x + iy$$
, the polar form of z is
$$z = r(\cos \theta + i \sin \theta) \quad \text{where } r = |z| \text{ and } \theta = \arg(z)$$

Converting: Cartesian <-> Polar

Polar to cartesian:

If
$$z = x + iy = r(\cos \theta + i \sin \theta)$$
,
then $x = r \cos \theta$ and $y = r \sin \theta$

Cartesian to polar:

If
$$z = x + iy = r(\cos \theta + i \sin \theta)$$
,
then $r = |z| = \sqrt{x^2 + y^2}$
 $\theta = \tan^{-1} \left(\frac{y}{x}\right) \pm \pi$

It is very useful to know by heart the Sin and Cos of

$$\frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{6}$$
 and of course π and $\frac{\pi}{2}$

Exercises:

Question 1:

Complete the table, giving the exact values

Angle θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
Sin θ						
Cos θ						
Tan θ						

Question 2:

Find, in the form x+iy, the complex numbers given in polar coordinate form by:

(a)
$$z = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
, (b) $4\left(\cos\frac{-2\pi}{3} + i\sin\frac{-2\pi}{3}\right)$.

Question 3:

Find the arguments of the following complex numbers. Give the answer where appropriate as a rational multiple of π , otherwise give the argument correct to 2 decimal places.

(a)
$$1 + 2i$$

(b)
$$3 - 4$$

(a)
$$1+2i$$
 (b) $3-4i$ (c) $-5+6i$ (d) $-7-8i$

(d)
$$-7 - 8i$$

$$(g)$$
 $-$

(e) 1 (f)
$$2i$$
 (g) -3 (h) $-4i$

(i)
$$\sqrt{2} - \sqrt{2}$$

(i)
$$\sqrt{2} - \sqrt{2}i$$
 (j) $-1 + \sqrt{3}i$

Here is a list of 14 complex numbers Some of them are represented in the Argand diagram Label these points.

$z_i = 5 (\cos \pi + i \sin \pi)$	$z_2 = 4 + 5i$
$z_3 = 4 (\cos(-\frac{2}{3}\pi) + i \sin(-\frac{2}{3}\pi)$	$z_{4} = -5 + 3i$
$z_s = 6 \left(\cos \frac{1}{4}\pi + i \sin \frac{1}{4}\pi\right)$	z _c = - 4 - i
$z_{p} = 3 (\cos(-\frac{1}{2}\pi) + i \sin(-\frac{1}{2}\pi))$	$z_g = 3i$
$z_{ij} = 5 (\cos (-1.1) + i \sin (-1.1))$	$z_{i\sigma} = 3 + 2i$
$z = 3 \left(\cos \frac{1}{6}\pi + i \sin \frac{1}{6}\pi\right)$	$z_z = 4 - 2i$
$z = 4.5 (\cos 2 + i \sin 2)$	$z_{14} = 4 (\cos \frac{1}{2}\pi + i \sin \frac{1}{2}\pi)$

Multiplication and division

$$z_1 = r_1(\cos\theta + i\sin\theta)$$
 and $z_2 = r_2(\cos\alpha + i\sin\alpha)$

- 1) a) Write $-z_1$
 - b) $Express(-z_1)$ in polar form
 - c) Which transformation maps $z_1 to z_1$
- 2) a) Write z_1^*
 - b) Express z₁* in polar form
 - c) Which transformation maps z_1 to z_1^*
- 3) a) Work out $z_1 \times z_2$
 - b) Express $z_1 z_2$ in polar form
- 4) a) Work out $\frac{z_1}{z_2}$, rationalising your answer
 - b) Express $\frac{z_1}{z_2}$ in polar form

Consequence in the Argand diagram

Summary

If $z_1 = (r_1, \theta_1)$ and $z_2 = (r_2, \theta_2)$ then $z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2)$ – with the proviso that 2π may have to be added to, or subtracted from, $\theta_1 + \theta_2$ if $\theta_1 + \theta_2$ is outside the permitted range for θ

If $z_1 = (r_1, \ \theta_1)$ and $z_2 = (r_2, \ \theta_2)$ then $\frac{z_1}{z_2} = \left(\frac{r_1}{r_2}, \ \theta_1 - \theta_2\right)$ – with the same proviso regarding the size of the angle $\theta_1 - \theta_2$

Exercises:

- 1. (a) Find $\frac{z_1}{z_2}$ if $z_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ and $z_2 = 3\left(\cos\frac{\pi}{6} i\sin\frac{\pi}{6}\right)$.
 - (b) What can you say about the modulus and argument of $\frac{z_1}{z_2}$?
- **2** If $z_1 = \left(3, \frac{2\pi}{3}\right)$ and $z_2 = \left(2, -\frac{\pi}{6}\right)$, find, in polar form, the complex numbers
 - (a) $z_1 z_2$, (b) $\frac{z_1}{z_2}$, (c) z_1^2 , (d) z_1^3 , (e) $\frac{z_2}{z_1^2}$.

Further consideration of $|z_2 - z_1|$ and $arg(z_2 - z_1)$

Consider the points $A(z_A)$ and $B(z_B)$ with $z_A = 2 + i$ and $z_B = 3 + 2i$

- a) Represent z_A and z_B in the Argand diagram
- b) Work out $z_C = z_B z_A$ and represent it in the Argand diag.

- c) Work out |zc|
- d) Work out the distance AB
- e) Work out arg(z_C)
- f) Work out the gradient of the line AB hence the angle between the line AB and the x-axis.

If the complex number z_1 is represented by the point A, and the complex number z_2 is represented by the point B in an Argand diagram, then $|z_2 - z_1| = AB$, and $\arg(z_2 - z_1)$ is the angle between AB and the positive direction of the x-axis

Loci on Argand diagrams

Part 1: Locus of the points M(z) with $|z - z_1| = r$

Case 1:
$$z_1 = 0$$

Locus
$$|z| = r$$

The locus is the CIRCLE centre O(0,0) withy radius r.

Case 2: $z_1 \neq 0$, $z_1 = a + ib$

The locus is the CIRCLE centre A(a,b) withy radius r.

Part 2: Locus of the points M(z) with $|z - z_1| = |z - z_2|$

In an Argand diagram, consider the points $M_1(z_1)$ and $M_2(z_2)$

 $|z - z_1| = |z - z_2|$ means $MM_1 = MM_2$:

The points belonging to the locus are EQUIDISTANT from M₁ and M₂

The locus is the PERPENDICULAR BISECTOR of the points M_1 and M_2 .

Part 3: Locus of the points M(z) with arg ($z - z_1$) = θ

Case 1:
$$z_1 = 0$$
 Locus $arg(z) = \theta$

The locus is the HALF-LINE/RAY with equation $y = \tan(\theta)x$ and $x \ge 0$. (The ray makes angle θ with the x-axis)

Case 2:
$$z_1 \neq 0$$
, $z_1 = a+ib$
The point $M_1(a,b)$

The locus is the HALF-LINE/RAY with equation $(y-b) = \tan(\theta)(x-a)$ and $x \ge a$. (The ray makes angle θ with the horizontal line going through M_1)

It is a translation of vector $\begin{pmatrix} a \\ b \end{pmatrix}$ of the locus $\arg(z) = \theta$

|z| = k represents a circle with centre O and radius k

 $|z-z_1|=k$ represents a circle with centre z_1 and radius k

 $|z - z_1| = |z - z_2|$ represents a straight line – the perpendicular bisector of the line joining the points z_1 and z_2

 $\arg z = \alpha$ represents the *half* line through *O* inclined at an angle α to the positive direction of *Ox*

 $arg(z-z_1) = \alpha$ represents the half line through the point z_1 inclined at an angle α to the positive direction of Ox

Exercises

- (a) |z| = 3, (b) $\arg(z-1) = \frac{\pi}{4}$, (c) |z-2-i| = 5.
- 2. Sketch on Argand diagrams the regions where:

 - (a) $|z-3i| \le 3$, (b) $\frac{\pi}{2} \le \arg(z-4-2i) \le \frac{5\pi}{6}$.
- 3. Sketch on an Argand diagram the region satisfying both $|z-1-i| \le 3$ and $0 \le \arg z \le \frac{\pi}{4}$.
- 4. Sketch on an Argand diagram the locus of points satisfying both |z-i| = |z+1+2i| and $|z+3i| \leq 4$.