SLBS

SORTS and SEARCHES

Try sorting these numbers into ascending order:

7
12
8
21
24
3
16
25
14
9
10

23
71
1
16
29
31
51
22
8
11
14

21
17
8
41
2
29
18
20
14
5
27

33
24
12
1
18
62
14
18
27
31
8

41
45
27
31
4
18
39
47
50
2
16

Very easy to make mistakes!

BUBBLE-SORT ALGORITHM

It is so named because numbers (or letters) which are in the wrong place “bubble-up” to their correct positions (like fizzy lemonade)

You can “bubble” from bottom to top, right to left, top to bottom or left to right as long as you “bubble” in the same direction.

Assuming you are “bubbling” from right to left:

[image: image1.wmf]1

2

3

4

6

5

15

8

8

8

7

5

14

6

6

9

9

Example
Sort into ascending order:

[image: image2.wmf]14

5

4

3

2

1

15

5

7

6

6

9

9

8

8

7

[image: image3.wmf]5

4

3

2

1

8

15

14

6

6

7

7

5

9

9

8

27

15

2

38

16

1

[image: image4.wmf]1

2

3

4

6

5

15

8

8

8

7

5

14

6

6

9

9

27

15

2

38

1

16

[image: image5.wmf]5

4

3

2

1

8

15

14

6

6

7

7

5

9

9

8

27

15

2

1

38

16

[image: image6.wmf]14

5

4

3

2

1

15

5

7

6

6

9

9

8

8

7

27

15

1

2

38

16

27

1

15

2

38

16

1

27

15

2

38

16
This completes the first pass with 1 now in its correct position.
Each pass succeeds in placing at least one number in its correct position. Now apply the algorithm to the sublist with 1 removed.

1

27

15

2

38

16
1

27

2

15

16

38
1

27

2

15

16

38
1

2

27

15

16

38

This completes the second pass with 2 now in its correct position (note that 16 & 38 also swapped). Now apply the algorithm to the sublist with 1 and 2 removed.

1

2

27

15

16

38
1

2

27

15

16

38
1

2

15

27

16

38
This completes the third pass with 15 now in its correct position. Now apply the algorithm to the sublist with 1, 2 and 15 removed.
1

2

15

27

16

38
1

2

15

16

27

38
The final pass does not produce any changes

This completes the sort with all numbers in their correct position

Note: a “pass” is also known as an “iteration”

What needs to be shown in an exam? The result of each “pass”!

i.e
27

15

2

38

16

1

1

27

15

2

38

16

1

2

27

15

16

38

1

2

15

27

16

38

1

2

15

16

27

38 Stop
Example

Use a bubble-sort to arrange these names into alphabetical order:

Smith
Jones
Wells
Fox

Davis

S
J
W
F
D
J
S
W
F
D
J
S
W
F
D
J
S
F
W D
J
S
F
D
W
At the end of the first pass, Wells is in the correct position

J
S
F
D
W
J
S
F
D
W

J
F
S
D
W
J
F
D
S
W
At the end of the second pass, Smith is in the correct position

J
F
D
S
W
F
J
D
S
W
F
D
J
S
W
At the end of the third pass, Jones is in the correct position

F
D
J
S
W
D
F
J
S
W
At the end of the fourth pass, Fox is in the correct position.
Record
S
J
W
F
D

J
S
F
D
W.

J
F
D
S.
W.

F
D
J.
S.
W.

D
F.
J.
S.
W. Stop
Common Errors

1)
Don’t forget to keep bubbling in the same direction

2)
Towards the end of the sorting, it is very tempting to just
switch over those two that are in the wrong place without
going through a tedious pass of the algorithm - don’t,
you’ll lose marks!

3)
Write out the list each time it alters, otherwise it is
impossible to mark!

4)
There are no marks for getting the list in the right order!
It is method that is being assessed here!

QUICK-SORT ALGORITHM

Introduced by Hoare in 1962

The mid-point of a list has position [½(N+1)]

where [x] is the smallest integer greater than or equal to x

e.g.
for 3, 6, 7, 11, 15
[½ (5+1)] = [3] = 3 (mid-point = 7

for A, C, Y, B, D, R
[½ (6+1)] = [3½] = 4 (mid-point = B

Example

Use a quick-sort to arrange these numbers in numerical order
27
15
2
19
16
1

Mid-point = [½(6+1)] = [3½] = 4th number = 19

27
15
2
19
16
1

15
2
16
1
19
27

 L1

 L2

15
2
16
1
19
27

15
2
 1
16
19
27

15
2
1
16
19
27

1
2
15
16
19
27
Stop

Example

Use a quick-sort to arrange these letters in alphabetical order.
Y
T
A
B
F
S
F
L
Mid-point = [½(8 + 1)] = [4½] = 5th letter = F

Y
T
A
B
F
S
F
L

A
B
F
F
Y
T
S
L

A
B
F
F
L
S
Y
T

A
B
F
F
L
S
T
Y
Stop

Example

Use a quick-sort to arrange these letters in numerical order.
16
21
15
3
12
9
27
6
18
17

Mid-point = [½(10 + 1)] = [5½] = 6th number = 9

16
21
15
3
12
9
27
6
18
17

3
6
9
16
21
15
12
27
18
17
3
6
9
12
16
21
15
27
18
17
3
6
9
12
16
21
15
18
17
27
3
6
9
12
15
16
21
18
17
27

3
6
9
12
15
16
17
18
21
27
3
6
9
12
15
16
17
18
21
27
STOP

Common Errors

1)
The choice of pivot must be constant. If you have an
even number of items in a list, the middle number is not
clear. If you choose the right-hand number the first
time, you must continue to select the right-hand number
each time you have a choice.

2)
Do not be tempted to reorder the items in a sub-list.

3)
Remember that it is the method that is being assessed
and not the answer. So make sure enough working is
being shown. The list should be rewritten each time a new
sub-list is created.

4)
Remember to indicate the stop step.

(Read pp 7-12)

Ex 1B on pp 13-14
BIN-PACKING ALGORITHMS

We are seeking to pack bins (of given size) with various items.

To find the lower bound, sum the numbers to be packed and divide this total by the size of the bin. The lower bound is the least integer greater than or equal to the result.

Problem:

Pack the following items in bins of size 20

8
7
14
9
6
9
5
15
6
7
8

The sum is 94

94 divided by 20 is 4.7

So the lower bound is 5
(
we need at least 5 bins

FIRST-FIT ALGORITHM

Take the items in the order given and place each item in the first available bin that can take it, starting from Bin 1 each time.

Bin 1

8
7
5

Bin 2

14
6

Bin 3

9
9

Bin 4

15

Bin 5

6
7

Bin 6

8

FIRST-FIT DECREASING ALGORITHM
Firstly, reorder the items so that they are in decreasing order.

Then apply the first-fit algorithm to the reordered list.

The reordered list (using a sorting algorithm if necessary):

15
14
9
9
8
8
7
7
6
6
5

Bin 1

15
5

Bin 2

14
6

Bin 3

9
9

Bin 4

8
8

Bin 5

7
7
6

FULL-BIN PACKING

Here we use observations to find combinations of items that will fill a bin.

Pack those items first. Any remaining items are placed in the next available bin that can take the item, starting from Bin 1 each time.

 Scanning the list,
 14 + 6 = 20 (so put in Bin 1)

7 + 7 + 6 = 20 (so put in Bin 2)

 5 + 15 = 20 (so put in Bin 3)

Bin 1

14
6

Bin 2

7
7
6

Bin 3

5
15

Bin 4

8
9

Bin 5

9
8

ADVANTAGES and DISADVANTAGES

First-fit Algorithm

Advantages
It is quick to do

Disadvantages
It is not likely to lead to a good solution

First-fit Decreasing Algorithm

Advantages
Usually get a fairly good solution

It is easy to do

Disadvantages
May not get the optimal solution

Full-Bin Packing

Advantages
Usually get a good solution

Disadvantages
Difficult to do, especially when the numbers

are plentiful and awkward

Of course, not all bin-packing problems will involve bins!

Example
Andy wants to record the following twelve TV programmes onto video tape. Each video tape has space for up to three hours of programmes.

Programme A B C D E F G H I J K L

Length (hr) ½ ½ ¾ 1 1 1 1 1½ 1½ 1¾ 2 2

i)
Suppose that Andy records the programmes in the order
A to L using the first-fit algorithm. Find the number of
tapes needed, and show which programmes are recorded
onto which tape.

ii)
Suppose instead that Andy is transferring the
programmes from previously recorded tapes, so that they
can be copied in any order, and that Andy uses the first-
fit decreasing algorithm. Find the number of tapes
needed, and show which programmes are recorded onto
which tape.

i)
Tape 1
½
½
¾
1
(ABCD)

Tape 2
1
1
1

(EFG)

Tape 3
1½
1½

(HI)

Tape 4
1¾

(J)

Tape 5
2

(K)

Tape 6
2

(L)
6 Tapes needed

ii)
Reordered list:
2 2 1¾ 1½ 1½ 1 1 1 1 ¾ ½ ½

Tape 1
2
1

(LG)

Tape 2
2
1

(KF)

Tape 3
1¾
1

(JE)

Tape 4
1½
1½

(IH)

Tape 5
1
¾
½
½
(DCBA) 5 Tapes

needed
(Read pp 14-19)
Ex 1c pp 19-21
BINARY SEARCH ALGORITHM

This only applies to a list of names in alphabetical order or a list of numbers in increasing order.

Unordered lists would have a sorting algorithm applied first.

This algorithm concentrates on the midpoint of an ever reducing list.

We define the midpoint of a list of N names, numbered N1, N1+1,...,N2 as [(N1+N2)/2] where [x] = the smallest integer greater than or equal to x

We wish to search the list for a name, Fred, say.

Example
a) Find the name Robinson in the list below.

b) Find the name Davis in the list below.

1
Bennett

2
Blackstock

3
Brown

4
Ebenezer

5
Fowler

6
Laing

7
Leung

8
Robinson
9
Saludo

10
Scadding

Solution

a)
The middle name is [(1+10)/2] = [5.5] = 6
(Laing

Robinson is after Laing, so the list reduces to

7
Leung

8
Robinson

9
Saludo

10
Scadding

The middle name is [(7+10)/2] = [8.5] = 9
(Saludo

Robinson is before Saludo, so the list reduces to

7
Leung

8
Robinson

The middle name is [(7+8)/2] = [7.5] = 8
(Robinson

The search is complete and Robinson has been found

b)
As before, the middle name is Laing

Davis is before Laing, so the list reduces to

1
Bennett

2
Blackstock

3
Brown

4
Ebenezer

5
Fowler

The middle name is [(1+5)/2] = [3] = 3
(Brown

Davis is after Brown, so the list reduces to

4
Ebenezer

5
Fowler

The middle name is [(4+5)/2] = [4.5] = 5
(Fowler

Davis is before Fowler, so the list reduces to

4
Ebenezer

The list is now only one item and this item is not Davis

We conclude that Davis is not on the list.
(Read pp 21-24)

Ex 1D on pp 24-25

Step 1

Compare the last two numbers on the extreme right. If the smaller number is on the right, swap the two numbers and reorder the list, if not, leave them.

Step 2

Move one step back in the list (to the left) and compare the two numbers. If the smaller is on the right swap the two numbers and reorder the list, if not, leave them.

Step 3

Repeat Step 2 until the two numbers on the extreme left have been compared, then return to Step 1.

Step 4

Repeat Step 3 until all the numbers are in order (i.e. no more swaps are performed in a pass)

Step 1

Locate the pivot element (use the element at the mid-point)

Step 2

Split the list into two sub-lists.

Sublist L1 contains those numbers less than or equal to the pivot and are written to the left of the pivot.

Sublist L2 contains those numbers greater than the pivot element and are written to the right of the pivot.

Do not reorder the numbers in the sub-lists

Step 3

Repeat Step 2 on each sub-list and each successive sub-list

Step 4

Stop when each sub-list contains only one number. The list is now sorted!

� EMBED FXDraw200.Document ���

� EMBED FXDraw200.Document ���

� EMBED FXDraw200.Document ���

Step 1

The algorithm compares Fred with the middle name in the list.

Either a) the name Fred is found to be at this position,

or	 b) the name Fred occurs before the middle of the list

or	 c) the name Fred occurs after the middle of the list

Step 2

If a) occurs, the search is over.

If b) occurs, the search continues with Step 1 on a reduced list consisting of those names before the middle name.

If c) occurs, the search continues with Step 1 on a reduced list consisting of those names after the middle name.

Stop when Fred has been found or when it has been shown that Fred does not appear on the list.

At each stage half of the remaining list is discarded (hence the name of the algorithm).

1
JMcC

_1204290207.bin

_1204291730.bin

_1204289412.bin

