Series

Specifications

Series

Use of formulae for the sum of the squares and the sum of the cubes of the natural numbers.

E.g. to find a polynomial expression for

$$\sum_{r=1}^{n} r^{2}(r+2) \text{ or } \sum_{r=1}^{n} (r^{2}-r+1).$$

In the formula book

Summations

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$
$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

The sigma sign

Consider the sequence 1, 4, 9, 16, 25, 36

The nth term of the sequence is n²

We want to work out the sum S = 1+4+9+16+25+36

S is called a SERIES (sum of the terms of a sequence)

Notation: S = 1+4+9+16+25+36 =
$$\sum_{n=1}^{6} n^2$$

N.B: The variable used inside the sigma sign could be any letter

Examples:
$$\sum_{n=2}^{4} 2n^3 = \sum_{k=1}^{3} 3k + 1 = \sum_{k=1}^{3} 3k + 1 = \sum_{k=1}^{4} 3k + 1 =$$

Manipulating the sigma sign

Consider two sequences with nth term f(r) and g(r) and two numbers a and b.

$$\sum_{r=1}^{n} \left(f(r) + g(r) \right) = \sum_{r=1}^{n} f(r) + \sum_{r=1}^{n} g(r)$$
 Sum between a and b

and

$$\sum_{r=1}^{n} a \times f(r) = a \times \sum_{r=1}^{n} f(r)$$

Sum between
$$a$$
 and b

$$\sum_{r=a}^{b} f(r) = \sum_{r=1}^{b} f(r) - \sum_{r=1}^{a-1} f(r)$$

Examples:

$$\sum_{r=1}^{5} 4r + 1 = \sum_{r=1}^{100} 2r^2 - 4r^3 =$$

$$\sum_{r=10}^{20} 2r =$$

Sum from 1 to n

The purpose of this chapter is to determine/learn an expression of series, in terms of n, when summing from 1 to n

•
$$\sum_{k=1}^{n} 1 =$$

Sum of the first "n" integers

$$\sum_{r=1}^{n} r =$$

Sum of the first "n" squared numbers

$$\sum_{r=1}^{n} r^2 =$$

Sum of the first "n" cubed numbers

$$\sum_{r=1}^{n} r^3 =$$

Proof:

In the formula book

Sum between two values

a)
$$\sum_{r=1}^{20} 3r + 4 =$$

$$b)\sum_{r=10}^{50} r^2 + 2r =$$

EXERCISE

1 Find the value of each of the following:

(a)
$$\sum_{r=1}^{25} 2$$
,

(b)
$$\sum_{r=1}^{20} r^2$$
,

(a)
$$\sum_{r=1}^{25} 2$$
, (b) $\sum_{r=1}^{20} r^2$, (c) $\sum_{r=1}^{40} r^3$,

(d)
$$\sum_{r=51}^{100} r^2$$
,

(e)
$$\sum_{r=101}^{130} r^3$$
,

(d)
$$\sum_{r=51}^{100} r^2$$
, (e) $\sum_{r=101}^{130} r^3$, (f) $\sum_{r=101}^{140} (r^3 - 500)$.

2 Evaluate:

(a)
$$\sum_{k=1}^{10} 6k^2$$

(b)
$$\sum_{k=1}^{60} 4k^3$$

(a)
$$\sum_{k=1}^{10} 6k^2$$
, (b) $\sum_{k=1}^{60} 4k^3$, (c) $\sum_{k=16}^{30} 3k^2$,

(d)
$$\sum_{k=15}^{50} (k^3 - 100)$$

(e)
$$\sum_{k=11}^{30} (k^2 + 3k)$$
,

(d)
$$\sum_{k=15}^{50} (k^3 - 100)$$
, (e) $\sum_{k=11}^{30} (k^2 + 3k)$, (f) $\sum_{k=1}^{20} (3k^3 - 6k^2 + 7)$.

(e) 10300; (f) II5 220. (p) 1911 (p) (c) 54 942: :009 568 EI (q) 5 (a) 2310; (p) 562 452; (e) \$\frac{1}{4}\$ 005 \(\frac{1}{2}\)? .004 468 I7 (1) I (a) 50; (p) 7840: (c) 672 400;

Sum between 1 and n

Find
$$\sum_{k=1}^{n} (4k^3 - 12k)$$
 and factorise your answer.

$$\sum_{k=1}^{n} 4k^3 - 12k = 4\sum_{k=1}^{n} k^3 - 12\sum_{k=1}^{n} k = 4 \times \frac{1}{4}n^2(n+1) - 6] = n(n+1)(n^2 + n - 6) = n(n+1)(n+3)(n-2)$$
so
$$\sum_{k=1}^{n} 4k^3 - 12k = n(n+1)[n(n+1) - 6] = n(n+1)(n^2 + n - 6) = n(n+1)(n+3)(n-2)$$

EXERCISE

1 Prove that $\sum_{r=1}^{n} (6r^2 + 24r) = n(n+1)(2n+13)$.

2 Prove that $\sum_{r=1}^{n} (4r^3 + 6r) = n(n+1)(n^2 + n + 3)$.

3 Prove that $\sum_{r=1}^{n} 12r^2(r+1) = n(n+1)(3n^2+7n+2)$.

4 Prove that $\sum_{r=1}^{n} (8r^3 + 6r - 3) = n^2(2n^2 + 4n + 5)$.

5 Prove that $\sum_{r=1}^{n} (2r^3 + 6r - 3) = \frac{1}{2}n^2(n^2 + 2n + 7)$.

6 Obtain an expression in terms of *n* for $\sum_{k=1}^{n} 2k(10k^2 + 1)$, giving your answer as a product of factors.

7 Find the sums of each of the following, giving your answers in factorised form:

(a)
$$\sum_{r=1}^{n} (4r^3 + 2r)$$
,

(b)
$$\sum_{r=1}^{n} (6r^2 + 4r)$$
,

(c)
$$\sum_{r=1}^{n} (8r^3 - 2r)$$
,

(d)
$$\sum_{r=1}^{n} (8r^3 - 6r^2)$$
,

(e)
$$\sum_{r=1}^{n} (12r^3 + 8r)$$
,

(f)
$$\sum_{r=1}^{n} (6r^2 - 6)$$
.

(c)
$$n(n+1)(2n^2+3n+4)$$
; (d) $n(n+1)(2n^2+3n+4)$; (e) $n(n+1)(2n^2+3n+4)$; (f) $n(n+1)(2n^2+3n+4)$; (f) $n(n+1)(2n^2+3n+4)$; (f) $n(n+1)(2n^2+3n+4)$;