Roots of quadratic equations

Objective: To establish the relationship between

the coefficients of a quadratic expression

and the sum and product of its roots

AQA specifications

Roots and coefficients of a quadratic equation

Manipulating expressions involving $\alpha + \beta$ and $\alpha\beta$.

E.g.
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

Forming an equation with roots α^3 , β^3 or $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\alpha + \frac{2}{\beta}$, $\beta + \frac{2}{\alpha}$ etc.

Notations:

A quadratic equation will be written ax²+bx+c=0

The coefficient are a, b, c

We note the solutions (the roots) of this equation α and β

The SUM of the roots is $\alpha+\beta$

The PRODUCT of the root is $\alpha \times \beta = \alpha \beta$

The coefficients of the equation and the sum and product of the roots.

Exercise:

Find the solutions α and β of the following equations then work out the SUM α + β and the PRODUCT $\alpha\beta$.

Equation	α	β	α+β	αβ
$x^2 + 5x + 6 = 0$				
$x^2 - x - 12 = 0$				
$x^2 + 3x - 4 = 0$				
$2x^2 - 2x - 4 = 0$				
$3x^2 - 6x - 24 = 0$				

Can you now complete this table without working out α nor β ?

Equation	α+β	αβ
$x^2 + 2x + 6 = 0$		
$x^2 - x - 10 = 0$		
$2x^2 + 8x - 40 = 0$		
$3x^2 - 7x - 8 = 0$		
$ax^2 + bx + c = 0$		

Conclusion:

When the quadratic equation $ax^2 + bx + c = 0$ has roots α and β :

- The SUM of the roots $\alpha + \beta = -\frac{b}{a}$
- The PRODUCT of the roots $\alpha \beta = \frac{c}{a}$

EXERCISE

1 Find the sum and product of the roots for each of the following quadratic equations:

(a)
$$x^2 + 4x - 9 = 0$$

(b)
$$2x^2 - 3x - 5 = 0$$

(c)
$$2x^2 + 10x - 3 = 0$$
 (d) $1 + 2x - 3x^2 = 0$

(d)
$$1 + 2x - 3x^2 = 0$$

(e)
$$7x^2 + 12x = 6$$

(e)
$$7x^2 + 12x = 6$$
 (f) $x(x-2) = x + 6$

(g)
$$x(3-x) = 5x-2$$

(g)
$$x(3-x) = 5x-2$$
 (h) $ax^2 - a^2x - 2a^3 = 0$

(i)
$$ax^2 + 8a = (1 - 2a)x$$

(j)
$$\frac{4}{x+5} = \frac{x-3}{2}$$

-23	۲-	(į
8	<u>1-2a</u>	(i
-Sa ²	g	(q (6 (J
2-	Z-	(6)
9-	3	(1
2- 2- 2e2-	$\frac{L}{2I}$	(ə
\frac{1}{\varepsilon} - \frac{\varepsilon}{\varepsilon} - \varepsilo	<u>ε</u>	(p
$\frac{\varepsilon}{2}$	9-	(၁
<u>z</u> _	<u>z</u> £	c) p)
6-	7 -	(8
IODDOLL	IIIno	

Product wns

Now, the other way round...

Write down a quadratic equation with:

(a) sum of roots = 5, product of roots = 8,

(b) sum of roots = -3, product of roots = 5,

(c) sum of roots = 4, product of roots = -7,

a)
$$x^2-5x+8=0$$

b)
$$x^2+3x+5=0$$

c)
$$x^2-4x-7=0$$

Generalisation:

If α and β are the roots of a quadratic equation, then they are solution of the equation

 x^2 - (Sum of roots)x + (Product of the roots) = 0

that is $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

Important : do not forget "=0"

and

There are an infinite number of equivalent equations

Manipulating expressions involving α and β

Exercise:

Considering that $\alpha+\beta=3$ and $\alpha\beta=5$, Work out

a)
$$(\alpha+3)+(\beta+3)$$
 and $(\alpha+3)(\beta+3)$

b)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
 and $\frac{1}{\alpha} \times \frac{1}{\beta}$ Write an equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

C)
$$\frac{1}{\alpha^2 \beta} + \frac{1}{\beta^2 \alpha}$$
 and $\frac{1}{\alpha^2 \beta} \times \frac{1}{\beta^2 \alpha}$ Write an equation with roots $\frac{1}{\alpha^2 \beta}$ and $\frac{1}{\beta^2 \alpha}$

Page

Expressions involving squares and cubes

Expand $(\alpha + \beta)^2$

Hence work out and expression of $\alpha^2+\beta^2$ in terms of $\alpha+\beta$ and $\alpha\beta$

Expand $(\alpha + \beta)^3$

Hence work out and expression of $\alpha^3+\beta^3$ in terms of $\alpha+\beta$ and $\alpha\beta$

Remember

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$
$$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$$

EXERCISE

- 1 Write each of the following expressions in terms of $\alpha + \beta$ and
 - (a) $\frac{2}{\alpha} + \frac{2}{\beta}$

(b) $\frac{1}{\alpha^2 \beta} + \frac{1}{\beta^2 \alpha}$

- (d) $\alpha^2\beta + \beta^2\alpha$
- (e) $(2\alpha 1)(2\beta 1)$
- (f) $\frac{\alpha+5}{\beta} + \frac{\beta+5}{\alpha}$
- **2** Given that $\alpha + \beta = -3$ and $\alpha\beta = 9$, find the values of:
 - (a) $\alpha^3\beta + \beta^3\alpha$,

- (b) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
- **3** Given that $\alpha + \beta = 4$ and $\alpha\beta = 10$, find the values of:
 - (a) $\alpha^2 + \beta^2$,

- **(b)** $\alpha^3 + \beta^3$.
- **4** Given that $\alpha + \beta = 7$ and $\alpha\beta = -2$, find the values of:
 - (a) $\frac{1}{\beta^2} + \frac{1}{\alpha^2}$,

.2- (ii)

(b) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$.

7 (a) (i) 4. (ii) 1;

I (a) $\frac{2(\alpha+\beta)}{2(\alpha+\beta)}$;

- **5** The roots of the quadratic equation $x^2 5x + 3 = 0$ are α and β .
 - (a) Write down the values of $\alpha + \beta$ and $\alpha\beta$.
 - **(b)** Hence find the values of:
 - (i) $(\alpha-3)(\beta-3)$, (ii) $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$.
- **6** The roots of the equation $x^2 4x + 3 = 0$ are α and β . Without solving the equation, find the value of:
 - (a) $\frac{1}{\alpha} + \frac{1}{\beta}$

- (c) $\alpha^2 + \beta^2$
- (d) $\alpha^2 \beta + \alpha \beta^2$
- (e) $(\alpha \beta)^2$
- (f) $(\alpha + 1)(\beta + 1)$
- **7** The roots of the quadratic equation $x^2 + 4x + 1 = 0$ are α and β .
 - (a) Find the values of: (i) $\alpha + \beta$, (ii) $\alpha\beta$.
 - **(b)** Hence find the value of:

 - (i) $(\alpha^2 \beta)(\beta^2 \alpha)$, (ii) $\frac{\alpha + 2}{\beta + 2} + \frac{\beta + 2}{\alpha + 2}$.

Forming NEW equations with related roots

Let's look at an exam question:

1 The quadratic equation $x^2 - 6x + 18 = 0$ has roots α and β .

(a) Write down the values of $\alpha + \beta$ and $\alpha\beta$.

(2 marks)

(b) Find a quadratic equation, with integer coefficients, which has roots α^2 and β^2 .

(4 marks)

January 2011

Your go...

The roots of the quadratic equation $2x^2 + 5x - 1 = 0$ are α and β

- a) Write down i) $\alpha + \beta$ ii) $\alpha\beta$
- b) Find a quadratic equation with integer coefficients which has roots $\alpha 2$ and $\beta 2$.

The roots of the quadratic equation $x^2 - 3x - 7 = 0$ are α and β .

- a) Write down the values of
 - i)α+β
 - ii)αβ
- b) Find a quadratic eqution with integer coefficients whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$

EXERCISE

- 1 The roots of the equation $x^2 + 6x 4 = 0$ are α and β . Find a quadratic equation whose roots are α^2 and β^2 .
- **2** The roots of the equation $x^2 + 3x 5 = 0$ are α and β . Find a quadratic equation whose roots are $\frac{2}{\alpha}$ and $\frac{2}{\beta}$.
- **3** The roots of the equation $x^2 9x + 5 = 0$ are α and β . Find a quadratic equation whose roots are $\alpha + 2$ and $\beta + 2$.
- 4 Given that the roots of the equation $2x^2 + 5x 3 = 0$ are α and β , find an equation with integer coefficients whose roots are $\alpha \beta^2$ and $\alpha^2 \beta$.
- **5** Given that the roots of the equation $3x^2 6x + 1 = 0$ are α and β , find a quadratic equation with integer coefficients whose roots are α^3 and β^3 .
- **6** The roots of the equation $2x^2 + 4x 1 = 0$ are α and β . Find a quadratic equation with integer coefficients whose roots are $\frac{\beta}{\alpha}$ and $\frac{\alpha}{\beta}$.
- 7 The roots of the equation $3x^2 6x 2 = 0$ are α and β .
 - (a) Find the value of $\alpha^2 + \beta^2$.
 - **(b)** Find a quadratic equation whose roots are $\alpha^2 + 1$ and $\beta^2 + 1$.
- **8** The roots of the equation $2x^2 + 7x + 3 = 0$ are α and β . Without solving this equation,
 - (a) find the value of $\alpha^3 + \beta^3$.

Page 11

- **(b)** Hence, find a quadratic equation with integer coefficients which has roots $\frac{\alpha}{\beta^2}$ and $\frac{\beta}{\alpha^2}$.
- **9** Given that α and β are the roots of the equation $5x^2 - 2x + 4 = 0$, find a quadratic equation with integer coefficients which has roots $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$.
- 10 The roots of the equation $x^2 + 4x 6 = 0$ are α and β . Find an equation whose roots are $\alpha^2 + \beta$ and $\beta^2 + \alpha$.

 $x^2 + 10x + 1 = 0$

 $16x^2 + 36x + 25 = 0$

 $x^2 - 13x + 27 = 0$

 $18x^2 + 217x + 12 = 0$

 $5x^2 - 6x - 4 = 0$

 $x^2 - 24x - 106 = 0$

 $27x^2 - 162x + 1 = 0$

 $8x^2 - 30x - 27 = 0$

 $x^2 - 44x + 16 = 0$

 $9x^2 - 66x + 61 = 0$

Extension

- **5** The roots of the quadratic equation $x^2 2x 5 = 0$ are α and β . Find a quadratic equation which has roots $\alpha^2 + 1$ and $\beta^2 + 1$.
- **6** The roots of the quadratic equation $x^2 + 5x 7 = 0$ are α and β .
 - (a) Without solving the equation, find the values of
 - (i) $\alpha^2 + \beta^2$,

- (ii) $\alpha^3 + \beta^3$.
- (b) Determine an equation with integer coefficients which

has roots
$$\frac{\alpha^2}{\beta}$$
 and $\frac{\beta^2}{\alpha}$.

[A]

- 7 The roots of the quadratic equation $3x^2 + 4x 1 = 0$ are α and β .
 - (a) Without solving the equation, find the values of
 - (i) $\alpha^2 + \beta^2$,

- (ii) $\alpha^3\beta + \beta^3\alpha$.
- **(b)** Determine a quadratic equation with integer coefficients which has roots $\alpha^3 \beta$ and $\beta^3 \alpha$. [A]
- **8** The roots of the quadratic equation $x^2 + 2x + 3 = 0$ are α and β .
 - (a) Without solving the equation:
 - (i) write down the value of $\alpha + \beta$ and the value of $\alpha\beta$,
 - (ii) show that $\alpha^3 + \beta^3 = 10$,
 - (iii) find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$.
 - **(b)** Determine a quadratic equation with integer coefficients which has roots $\frac{1}{\alpha^3}$ and $\frac{1}{\beta^3}$. [A]

```
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 = 0 + 40 = 0
0 =
```

Key point summary

- I When the quadratic equation $ax^2 + bx + c = 0$ has roots α and β :
 - The sum of the roots, $\alpha + \beta = -\frac{b}{a}$; and the product of roots, $\alpha \beta = \frac{c}{a}$.
- **2** A quadratic equation can be expressed as x^2 (sum of roots)x + (product of roots) = 0
- **3** Two useful results are:

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$

$$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta).$$

- **4** The basic method for forming new equations with roots that are related to the roots of a given equation is:
 - 1 Write down the sum of the roots, $\alpha + \beta$, and the product of the roots, $\alpha\beta$, of the given equation.
 - **2** Find the sum and product of the new roots in terms of $\alpha + \beta$ and $\alpha\beta$.
 - 3 Write down the new equation using

 x^2 – (sum of new roots)x + (product of new roots) = 0