SLBS

DECISION MATHEMATICS

Definitions

An ALGORITHM is a set of precise instructions which if followed will solve a problem.

(Read pp 1-6)

Ex 1A pp 6-7
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A GRAPH G consists of a finite number of points (usually called vertices or nodes) connected by lines (usually called edges or arcs)

A, B, C, D and E are vertices (nodes)

The lines AB, BC, CD, AD, BE are edges

The lines are called arcs if they have a direction

The intersection of AD and BE is not a vertex

(Read pp 28- 31 on Modelling Using Graphs)

GRAPH THEORY
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A PATH is a finite sequence of edges such that the end vertex of one edge in the sequence is the start vertex of the next.

e.g.  ABCDF

A CYCLE (or Circuit) is a closed path, i.e. the end vertex of the last edge is the start vertex of the first edge.

e.g. ABCDA

A HAMILTONIAN CYCLE is a cycle that passes through every vertex of the graph once and only once, and returns to its start vertex.  (Not all graphs have such a cycle)

e.g. ABCDFEA

A EULERIAN CYCLE is a cycle that includes every edge of a graph exactly once.  (Not all graphs have such a cycle)

The above graph does not have an Eulerian cycle

The VERTEX SET is the set of all vertices of a graph.

e.g. { A, B, C, D, E, F }

The EDGE SET is the set of all edges of a graph.

e.g. { AB, AD, AE, BC, CD, DE, DF, EF }

a SUBGRAPH of a graph is a subset of the vertices together with a subset of the edges.

[image: image4.wmf]H

G

F

E

D

C

B

A


e.g.

Two vertices are CONNECTED if there is a path in G between them.

A graph is CONNECTED if all pairs of its vertices are connected.

e.g the above graph is connected but the example below isn’t as there is no path from A to H
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A LOOP is an edge with the same vertex at each end.
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e.g.

A SIMPLE GRAPH is one in which there are no loops and not more than one edge connecting any pair of vertices.
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e.g. the given example is a simple graph (on p 2) but the two below are not:

there are two edges that connect A and D
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there is loop at C

The DEGREE (or VALENCY or ORDER) of a vertex is the number of edges attached to it.
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e.g.

	Vertex
	Degree

	A
	2

	B
	4

	C
	1

	D
	3

	E
	2
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A DIGRAPH, which is short for Directed Graph, is a graph where one or more of the edges has a direction

e.g

Ex 2A pp 34-36
ADJACENY MATRIX

Used for storing in a computer

Each row and each column represent a vertex of the graph and the numbers in the matrix give the number of edges joining each pair of vertices.
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e.g.

	
	A
	B
	C
	D

	A
	0
	2
	1
	1

	B
	2
	0
	0
	1

	C
	1
	0
	0
	1

	D
	1
	1
	1
	2


D to D is 2 because you can go in either direction

	
	A
	B
	C
	D
	E

	A
	0
	1
	0
	0
	1

	B
	0
	0
	1
	1
	1

	C
	0
	1
	0
	0
	0

	D
	0
	0
	0
	2
	0

	E
	1
	1
	0
	0
	0


For a Digraph, only include in the matrix the number of edges in the given direction.

e.g. for earlier example

Ex 2B pp 38-40

A TREE is a connected graph with no cycles.
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e.g.

The graph below is not a tree as it contains a cycle BCEB
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(Read pp 41-42)

A SPANNING TREE of graph G is a subgraph that includes all the vertices of G and is also a tree.

e.g. a spanning tree (there are others) is shown below the graph
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A COMPLETE GRAPH is one where every vertex is connected to every other vertex.

If it has n vertices, it is denoted by Kn



           K2

K3

       K4

    K5
Ex 2C Nos 1-3 p 46
A NETWORK  is a graph in which each edge or arc is given a value called its WEIGHT
(see top of p 45)
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e.g.

Note: this is not a geometric drawing, the weights do not represents the lengths of the edges.

MINIMAL CONNECTOR PROBLEMS

Problem:
A cable TV company is installing a system of cables to connect all the towns all the towns in a region.  The numbers in the network show distances in miles.
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What is the least amount of cable needed?
We can find a spanning tree (below) but does it use the least amount of cable? (Solution below uses 76 miles)
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KRUSKAL’S ALGORITHM   (1956)
This is an algorithm for finding a minimum spanning tree, or minimum connector.

This is a spanning tree such that the total length of its edges is as small as possible.
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Kruskal is an example of a GREEDY ALGORITHM 
It makes an optimal choice at each stage without reference to the arcs already chosen as long as no cycles are formed.

To solve our TV Cable problem:

Step 1
8 (FE), 10(FD), 12(DB), 12(DE), 13(BC), 14(CE), 


15(DC), 19(AB), 20(AD)

Step 2
Select FE

Step 3
a)  Select FD



b)  DB and DE are of equal length but DE 



    forms a cycle so DB must be chosen



c)  Select BC



d)  CE forms a cycle so reject it



e)  DC forms a cycle so reject it



f)  Select AB
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g)  AD forms a cycle so reject it

This solution uses 62 miles

In an exam, to show evidence of using the correct algorithm, you need only list the selected arcs in the order you chose them
e.g.
FE, FD, DB, BC, AB

(Read Examples 1 & 2 pp 52-54)

Ex 3A pp 55-56
Kruskal has two drawbacks:


1)
it is necessary to sort the edges in ascending order 

first


2)
it is necessary at each stage to check for cycles 


(difficult for large networks)

Another algorithm which is more easily computerised is:

PRIM’S ALGORITHM   (1957)

[image: image23.wmf]F

E

D

C

B

A

10

8

14

12

15

13

19

20

12


To solve our TV Cable problem:

Step 1

Choose vertex A
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Step 2

The nearest vertex is B, so add B using arc AB

Step 3
a) Arcs coming from A and B outside the tree 


    have lengths 20, 12, 13
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    Nearest vertex is D, so add D using arc BD



b) Arcs coming from A, B and D outside the tree 


    have lengths 13, 15, 12, 10



    Nearest vertex is F, so add F using arc DF
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c) Arcs coming from A, B, D, F outside the tree 


    have lengths 13, 15, 8



    Nearest vertex is E, so add E using arc EF
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d) Arcs coming from A, B, D, E, F outside the tree 

    have lengths 13, 15, 14
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    Has to be 13, so add C using arc BC

In an exam, to show evidence of using the correct algorithm, you need only list the selected arcs in the order you chose them.
AB, BD, DF, FE, BC

This gives the same solution as Kruskal as there is only one minimum spanning tree for this network.  However, the order in which the arcs is chosen is different and this is the evidence that you have used the correct algorithm to solve the problem.

You may get a different solution if there is more than one minimal spanning tree for a network.

Problems with Kruskal
Candidates get cold feet when they see the tree being built up out of splinters and use a highbred of Prim and Kruskal, choosing the least couple of arcs initially and then using Prim’s algorithm thereafter.

Candidates do not spot arcs that complete cycles and do not exclude them.

Candidates do not make the order of arc selection clear for the examiners.

Problems with Prim
Candidates only look at the arcs incident on the last connected vertex - creating a chain of arcs.

Candidates do not make the order of arc selection clear for the examiners.

Candidates either stop too soon or get rather carried away and don’t stop.
You will be told which vertex to start with.

Prim is better than Kruskal as it can be computerised easily in matrix form.

Kruskal’s algorithm adds one edge at a time to a subgraph, whereas Prim’s algorithm adds one vertex at a time.

Remember  for both algorithms:


the number of arcs in a final minimum spanning tree


should be one less than the number of vertices


(think fence posts and panels)

MATRIX FORM OF PRIM’S ALGORITHM

A network may be described using a DISTANCE MATRIX
For our TV Cable problem, the distance matrix is:

	
	A
	B
	C
	D
	E
	F

	A
	-
	19
	-
	20
	-
	-

	B
	19
	-
	13
	12
	-
	-

	C
	-
	13
	-
	15
	14
	-

	D
	20
	12
	15
	-
	12
	10

	E
	-
	-
	14
	12
	-
	8

	F
	-
	-
	-
	10
	8
	-
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Note the symmetry of the matrix; the first row is the same as the first column, the second row is the same as the second column, etc.
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Comparing the matrix algorithm with the network algorithm, it is seen that the choice and order of selection of the arcs is identical.

In an exam, the final matrix can look as if a bomb hit it!

(difficult to award marks in these circumstances)

So, number the columns in the order you arrow them and write down the arcs in the order they are selected.

AB, BD, DF, FE, BC

(Read pp 58-60)

Ex 3B pp 60-63
DIJKSTRA’S ALGORITHM   (1959)

This is for finding the shortest path in a network.

This is another example of a greedy algorithm.

(Read pp 63-64)

Use the following type of box:

	Vertex letter
	Order of selection
	Final values

	Working values
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Example
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Find the shortest path from A to F
What you will be given in the exam is a diagram like this:
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Solution:
(numbers in the “Working Values” box can only be 

  replaced by a smaller number)
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Working backwards from F

16 ( 3 = 13 so DF

13 ( 9 = 4   so CD

(  Show this!
4 ( 4 = 0     so AC

So tracing back gives  F (  D (  C (  A

Hence the shortest path from A to F is: ACDF
Length of shortest path = 16

Note:

1)
Don’t cross values out (examiners need to see them)

2)
Do not forget to give temporary labels to all deserving 
vertices

3)
The permanent label must be awarded to the smallest 
temporary label

4)
Explain your method by showing the tracing back

(Read pp 65-69)

Ex 3C pp 69-71

A BIPARTITE GRAPH consists of two sets of vertices, X and Y.  The edges only join vertices in X to vertices in Y, not vertices within a set.
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A COMPLETE BIPARTITE GRAPH is where every vertex in X is joined to every vertex in Y
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This graph is known as K3,2

Two graphs are ISOMORPHIC if they have the same number of vertices and the degrees of corresponding vertices are the same

e.g.
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A PLANAR GRAPH is one that can be drawn in a plane such that there are no edges crossing.   (No paths cross!)
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Microchips are planar networks.
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This graph is obviously planar (
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This graph ( does not seem to be planar, but if we redraw it as follows:

It can be drawn with no edges crossing, therefore it is planar.

How can we decide if a graph is planar or not?

A PLANARITY ALGORITHM

This can only be applied to graphs that have a Hamiltonian cycle (a cycle that passes through every vertex of the graph once and only once, and returns to its start vertex)
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Example

1)
Choose Hamiltonian cycle ABCDEFGHA (already a 
polygon)

2)
Choose any arc in original graph not in the cycle (say AE) 
and list other arcs in the cycle which cross this chosen 
arc (BG and BH)


This means that the chosen arc and the arcs it crosses 
must be separated by the polygon

3)
Formulate a bipartite list by placing the first arc on one 
side (IN) and the list of the other arcs on the other side 
(OUT).  Arcs which cross are incompatible.



IN


OUT



AE


BG
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BH

4)
Now choose one of the arcs on the OUT side, and list any


arcs which are incompatible with it.  Put these arcs as 
vertices on the IN side.


(Choose BG say. The new arcs which cross it are AC, AD, 
EH and FH.  These all now appear on the IN  side)



IN


OUT




AE


BG




AC


BH




AD




EH
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FH

5)
Select each new OUT arc in turn and list any new


incompatible arcs on IN side.

(Moving onto BH, there are no new arcs to add to the IN 
side and there are no more arcs on the OUT side to 
consider)
6)
Select each IN arc in turn and list any new incompatible 
arcs on the OUT side.

(Choosing AC we add BE to the OUT side, BG & BH are 
already there)



IN


OUT




AE


BG




AC


BH




AD


BE




EH




FH
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(choosing AD we add EC to the OUT side, BE, BG & BH are already there)



IN


OUT




AE


BG




AC


BH




AD


BE




EH


EC




FH
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(choosing EH we have nothing to add, choosing FH we add EG to the OUT side)



IN


OUT




AE


BG




AC


BH




AD


BE




EH


EC




FH


EG
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7)
Continue until all arcs have been added
8)
The planar graph can now be drawn.  All the arcs on the 
IN side of the bipartite list are drawn “inside” the 
Hamiltonian cycle and all the arcs on the OUT side 
“outside” the cycle.






(Read pp 73-75)

Ex 3D pp 75-76
THE ROUTE INSPECTION PROBLEM

A TRAVERSABLE graph is one that can be drawn without removing your pen from the paper and without going over the same edge twice.

The sum of degrees of the vertices is always twice the number of edges (Handshaking theorem)

( deg v   =   2e

Since the sum of the degrees of the vertices is always even, it follows that there will always be an even number of odd vertices. (Handshaking lemma)

If we start at vertex X and finish at vertex Y.

Assume X and Y are different vertices
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One edge is used when we leave X and each time we return to X we must arrive and leave by new edges.

Hence the vertex X must have an odd valency. It’s called an odd vertex.

Similarly Y must be an odd vertex.

All remaining vertices must be even, since every time we pass through an intermediate vertex (not X or Y) we use two edges.

A route starting and finishing at different vertices X and Y is only possible if X and Y are odd vertices and all the other vertices are even.  (Then the graph is called semi-Eulerian)
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Vertices A and D are odd

Vertices B, C and E are even

It is semi-Eulerian.

It can be drawn by starting at A and finishing at D by using the route

ABCDEAD
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If X = Y

X must be even, therefore:

If the start and finish vertices are the same, all vertices must be even.

The graph is called Eulerian.
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All vertices have degree 2 and are even.  It is Eulerian.  It can be drawn by starting and finishing at A using the route AECBDA

THE SEVEN BRIDGES OF KONIGSBERG

The town of Konigsberg in Eastern Prussia (later renamed Kalingrad) was built on the banks of the River Pregel, with islands that were linked to each other and the river banks by seven bridges.
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The citizens of the town tried for many years to find a route for a walk which would cross each bridge only once and allow them to end their walk where they had started.

Leonhard Euler (1707-1783) translated this practical problem into a graph theory problem.
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Representing the areas A, B, C and D as vertices and the 7 bridges as arcs, we obtain the following graph

All the vertices are odd.  Graph is not Eulerian.

Therefore the graph is not traversable and there is no solution!

Ex 4A pp 90-91
THE CHINESE POSTMAN PROBLEM

[Mei-Ku Kwan in 1962]

A postman wishes to deliver his letters by covering the shortest possible distance and return to his starting point.

If the graph is Eulerian it is traversable.

If it has some odd vertices then some arcs will have to be repeated.  These repeats will be such that when added to the graph it will make the odd vertices even!  This new graph is now Eulerian and therefore traversable.  We need to find the repeats that make the total distance of these repeats as small as possible.
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Note:

1)
Make sure you consider all possible pairings

2)
Make it clear which pairs you are using

3)
Remember to state the route at the end!

Example

A postman starts at the depot T and has to deliver mail along all the streets shown in the network below.  Find a route that means he travels the shortest possible distance.

All distances are in km.
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Solution

Step 1

Odd vertices are B(3), G(3), H(3), T(3)

Steps 2 and 3

	Pairing
	Shortest Route
	Distance

	BG and HT

BH and GT

BT and GH
	BEG + HECT

BEH + GECT

BCT + GH
	1.7 + 1.8 = 3.5

1.5 + 2.0 = 3.5

0.8 + 0.9 = 1.7


Step 4

The pairing with the smallest sum is BT and GH
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 A possible route is   TABEAGHEGHFDFECDTCBCT

Total weight of original graph = 17.25

Smallest sum of repeated edges = 1.7

Length of traversable route = 17.25 + 1.7  = 18.95 km

(Read Examples 1, 2 and 3 pp 92-95 + Special Case on p 96)

Ex 4B pp 96-99
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C and D are odd vertices


A, B and E are even vertices





Note that a loop is regarded as two edges
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Step 1		Rank the arcs in ascending order of weight





Step 2		Select the arc of least weight and use this to


			start the tree





Step 3		Choose the next smallest arc and add this to 			the tree UNLESS IT COMPLETES A CYCLE


			in which case reject it and proceed to the next


			smallest arc





Step 4		Repeat Step 3 until all vertices are included in


			the tree
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Step 1		Choose a starting vertex





Step 2		Connect it to the nearest vertex using the 				least arc





Step 3		Connect the nearest vertex not in the tree, to


			the tree, using the least arc


			(In order to do this, look at all the arcs that 			link vertices in the tree with those not in the 			tree, choose the smallest and use that to add 			the vertex, and its arc, to the tree)





Step 4		Repeat step 3 until all of the vertices are


			connected
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Step 1		Choose a starting vertex and delete all 				elements in that vertex’s row and arrow its 				column





Step 2		Neglecting all deleted terms, scan all arrowed


			columns for the lowest available element and


			circle that element





Step 3		Delete the circled element’s row and arrow its


			column





Step 4		Repeat steps 2 and 3 until all rows deleted





Step 5		The spanning tree is formed by the circled 				arcs





Step 1	Label the start vertex S with a permanent 				label of 0





Step 2	Put a temporary label on each vertex that can be 		reached directly from the vertex that has just 			received a permanent label.  The temporary label 		must be equal to the sum of the permanent label 			and the weight of the arc linking it directly to the 		vertex.  If there is already a temporary label at the 		vertex, it is only replaced if the new sum is smaller.





Step 3	Select the minimum temporary label and make it 			permanent.





Step 4	Repeat steps 2 and 3 until the destination vertex T 		receives its permanent label.





Step 5	Trace back from T to S including an arc AB 			whenever the permanent label of B ( permanent 			label of A = the weight of AB, given that B already 		lies on the path
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Step 1		Identify a Hamiltonian cycle in the graph





Step 2		Redraw the graph so that the Hamiltonian 				cycle forms a regular polygon and all edges 			are drawn as straight lines in the polygon





Step 3		Choose any edge AB and decide this will stay


			inside the polygon





Step 4		Consider any edges that cross AB


			(a)  if it is possible to move all these outside


			      without producing crossings, go to step 5


			(b)  if it is not possible then the graph is non


			      planar





Step 5		Consider each remaining crossing inside and


			see if any edge may be moved outside to


			remove it, without creating a crossing inside





Step 6		Stop when all crossings inside have been


			considered


			(a)  if there are no crossings inside or outside


			      then the graph is planar


			(b)  if there is a crossing inside that cannot be


			       removed then the graph is non-planar
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Step 1	Identify all the odd vertices





Step 2	Form all possible pairings of odd vertices





Step 3	For each pairing find the arcs that make the total


		distance of repeats as small as possible





Step 4	Choose the pairing with the smallest sum and add


		this to the graph





Step 5	Find a route that works and add the smallest sum


		found in Step 4 to the sum of all the weights in the


		original graph to find the length of the required


		route.
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