Complex numbers

specifications

Complex Numbers

Non-real roots of quadratic equations.

Sum, difference and product of complex numbers in the form x+i y.

Comparing real and imaginary parts.

Complex conjugates – awareness that non-real roots of quadratic equations with real coefficients occur in conjugate pairs.

Including solving equations e.g. $2z+z^*=1+i$ where z^* is the conjugate of z.

The sets of numbers

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \dots\}$$

Note: In some books, "0" is not considered a Natural number

The set of the Integers numbers:

$$\mathbb{Z} = \{...-4, -3, -2, -1, 0, 1, 2, 3, 4, 5,\}$$

The set of Rational numbers:

$$\mathbf{Q} = \{ \frac{p}{q} \text{ with } p \in \mathbb{Z}, q \in \mathbb{N}, q \neq 0 \}$$

The set of Real numbers:

 \mathbb{R} = All rational and irrational numbers (e, π , $\sqrt{2}$,...)

What's next?

To be able to solve equations like $x^2 = -1$ We consider numbers in "two dimensions"

These numbers are called complex numbers:

$$z=(2,1)$$
, $i=(0,1)$, $w=(5,-3)$

Introducing new numbers is improtant, but we also need to introduce operations to manipulate them:

Rule of addition:

$$(a,b)+(c,d)=(a+b,c+d)$$

Rule of multiplication

$$(a,b)\times(c,d)=(ac-bd,ad+bc)$$

$$\lambda \times (a,b) = (\lambda a, \lambda b)$$

Work out

- a) z+w
- b) z×w
- c) i×z

Let's make it simpler...

Work out

1)
$$(0,1)\times(0,1) =$$

$$2) (5,0)+(0,1)(6,0) =$$

$$3)(3,0)-(0,1)(2,0) =$$

Note: The complex numbers of the type (a,0) is simply written a (it is effectively a Real number)

From this we can establish the following notation:

The complex number (0,1) is called "i" and we have $i^2 = (-1,0) = -1$

A complex number z=(a,b)=(a,0)+(0,1)(b,0)can be written z = a+ib

where "a" and "b" are two real numbers

"a" is called the REAL part of z
"b" is called the IMAGINARY part of z

Rule of addition:

$$(a,b)+(c,d)=(a+b,c+d)$$

Rule of multiplication

$$(a,b)\times(c,d)=(ac-bd,ad+bc)$$

$$\lambda \times (a,b) = (\lambda a, \lambda b)$$

Complex numbers and operations

Adding and subtracting complex numbers

Consider two complex numbers

$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$
Then $z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$
and $z_1 - z_2 = (a_1 - a_2) + i(b_1 - b_2)$

Examples:

$$z_1 = 3 + 2i$$
 and $z_2 = -2 + 4i$
 $z_1 + z_2 = 1 + 6i$
 $z_1 - z_2 = 5 - 2i$

Multiplying complex numbers

Consider two complex numbers

$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$
Then $z_1 \times z_2 = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$

(just expand the brackets like you would do in algebra)

Examples:

$$z_1 = 3 + 2i$$
 and $z_2 = -2 + 4i$
 $z_1 \times z_2 = (3 + 2i)(-2 + 4i) = -6 + 12i - 4i + 8i^2$
 $z_1 \times z_2 = -14 + 8i$

Complex conjugates

Consider the complex number z = a + ib

The complex conjugate of z is noted z*

with
$$z^* = a - ib$$

EXERCISE

- 1 Simplify each of the following:
 - (a) i^5 , (b) i^6 , (c) i^9 , (d) i^{27} ,

- (e) $(-i)^3$, (f) $(-i)^7$, (g) $(-i)^{10}$.

- 2 Simplify:

- (a) $(2i)^3$, (b) $(3i)^4$, (c) $(7i)^2$,

- (d) $(-2i)^2$, (e) $(-3i)^3$, (f) $(-2i)^5$.
- 3 Solve each of the following equations, giving your answers in terms of i:

 - (a) $x^2 = -9$, (b) $x^2 = -100$, (c) $x^2 = -49$,

- (d) $x^2 + 1 = 0$, (e) $x^2 + 121 = 0$, (f) $x^2 + 64 = 0$,
- (g) $x^2 + n^2 = 0$, where *n* is a positive integer.
- 4 Find the exact solutions of each of the following equations, giving your answers in terms of i:
- (a) $x^2 = -5$, (b) $x^2 = -3$, (c) $x^2 = -8$,

- (d) $x^2 + 20 = 0$, (e) $x^2 + 18 = 0$, (f) $x^2 + 48 = 0$.

Examples:

$$z = 3 + 2i$$

$$z*=3-2i$$

1 (a) i; (b) -1; (c) i; (g) -i;
(e) i; (f) i; (g) -1.
2 (a) -8i; (b) 81; (c) -7i, 7i; (d) -i, i;
(d) -4; (e) 27i; (f) -32i.
3 (a) -9i, 3i; (b) -10i, 10i; (c) -7i, 7i; (d) -i, i;
(e) -11i, 11i; (f) -8i, 8i; (g) -ni, ni.
4 (a) -
$$\sqrt{5}i$$
, $\sqrt{5}i$; (b) - $\sqrt{3}i$, $\sqrt{3}i$; (c) - $2\sqrt{2}i$, $2\sqrt{2}i$
4 (a) - $2\sqrt{5}i$, $2\sqrt{5}i$; (b) - $\sqrt{3}i$, $\sqrt{3}i$; (c) - $2\sqrt{2}i$, $2\sqrt{2}i$, $2\sqrt{2}i$
(d) - $2\sqrt{5}i$, $2\sqrt{5}i$, $2\sqrt{5}i$; (e) - $3\sqrt{2}i$, $3\sqrt{2}i$; (f) - $4\sqrt{3}i$, $4\sqrt{3}i$.

EXERCISE

1 Find the complex conjugate of each of the following:

(a)
$$3 - i$$
,

(a)
$$3 - i$$
, (b) $2 + 6i$, (c) $-3 - 8i$
(e) $3 + \sqrt{2}i$, (f) $4 - \sqrt{3}i$, (g) $-1 - \frac{1}{3}i$

(c)
$$-3 - 8i$$
, (d) $-7 + 5i$,

d: (a)
$$5z_1 + 3z_2$$

(b)
$$3z_1 - 4z_2$$

5 The complex numbers z_1 and z_2 are given by $z_1 = 2 - 3i$ and

2 Simplify each of the following:

(a)
$$(3+i)+(5-2i)$$
, (b) $(3+i)-(5-2i)$,

(b)
$$(3+i) - (5-2i)$$
,

(c)
$$3(3-5i)+4(1+6i)$$

(c)
$$3(3-5i)+4(1+6i)$$
, (d) $3(3-5i)-4(1+6i)$,

(e)
$$4(8-5i)-5(1-4i)$$
, (f) $6(3-4i)-2(9-6i)$.

(f)
$$6(3-4i)-2(9-6i)$$
.

3 Simplify each of the following:

(a)
$$(4+i)(7-2i)$$
,

(b)
$$(3+4i)(5-3i)$$
,

(c)
$$(7-5i)(5+6i)$$
,

(d)
$$3(3-5i)(4+3i)$$
,

(e)
$$(8-5i)(8-5i)$$
,

(f)
$$(3-4i)^2$$
.

4 Find the square of each of the following complex numbers:

(a)
$$3 - i$$
,

(b)
$$2 + 6i$$
,

(c)
$$-3 - 8i$$
,

(d)
$$-7 + 5i$$
,

(e)
$$3 + \sqrt{2}i$$
,

Page 7

(f)
$$4 - \sqrt{3}i$$
.

(i) (i) (i)10 (a) 3 + 4i; (ii) - 7 + 24i.(p) 5e. (a) 5 - i; 71-=b 8 * * I - = d * (e) (i) 7x (II) 2M. -x + x = (m)(d) (i) 12, (III) (III) ,i01 - (ii) (c) (i) (2);4£ (III) (II) -6I, (m) 50: (ii) 4i, (8- (i) (d) , (i) (i) d, (ii) (ii) (III) 13: 2 (g) J: (c) 6 + 16! 167 - 81 (q) (e) 7 + 6V21; (q) 54 - 70t; (p) -37 + 741; (a) 8 - 6i; (c) -22 + 48i(c) 39 - 80i; ;iEE - 18 (b) (f) -7-24i. 3 (a) 30 - 1; (c) 65 + 17i; (111 + 72)1168 - 5 (p) (f) -12i. (c) 51: 2 (a) 8-1; $3i\xi + 2 - (d)$ (c) 13 + 61; (e) 3 - V2i; $i\frac{1}{6} + 1 - (8)$ (15V + 4 (1) 1 (a) 3+1; (c) -3 + 8i; (d) -1 - 5i; $(p) \ 7 - 91$

Find: (a) $5z_1 + 3z_2$ (b) $3z_1 - 4z_2$ (c) z_1z_2

6 Given that z^* is the conjugate of z, find the values of

(i) $z + z^*$, (ii) $z - z^*$, (iii) zz^*

 $z_2 = -3 + 5i$.

for each of the following values of z:

(a)
$$2 + 3i$$
,

(b)
$$-4 + 2i$$
, **(c)** $-5 - 3i$, **(d)** $6 - 5i$.

$$(c) -5 -$$

(d)
$$6 - 5i$$

(e) x + yi, where x and y are real.

7 Find the value of the real constant p so that (3+2i)(4-i)+p is purely imaginary.

8 Find the value of the real constant *q* so that (2 + 5i)(4 - 3i) + qi is real.

9 (a) Find (1+i)(2-3i).

(b) Hence, simplify (1+i)(2-3i)(5+i).

10 (a) Find $(2 + i)^2$.

(b) Hence, find: **(i)** $(2+i)^3$, **(ii)** $(2+i)^4$.

Solving quadratic equations.

- 1) Solve $x^2 + 9 = 0$
- 2) work out the discriminant (b²-4ac) of this quadratic equation. what do you notice?

A quadratic equations can be written

$$ax^2+bx+c=0$$

The DISCRIMINANT is the value $b^2 - 4ac$

• If
$$b^2 - 4ac > 0$$
, there are two roots $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

•If
$$b^2 - 4ac = 0$$
, the re is a repeated root $x_0 = -\frac{b}{2a}$

•If
$$b^2 - 4ac < 0$$
, there are two complex conjugate roots $x_1 = \frac{-b + i\sqrt{-b^2 + 4ac}}{2a}$ and $x_2 = \frac{-b - i\sqrt{-b^2 + 4ac}}{2a}$

Solving $x^2 - 4x + 13 = 0$

$$x^2 - 4x + 13 = 0$$

Discriminant: $(-4)^2 - 4 \times 1 \times 13 = 16 - 42 = -26$

The complex roots are $\frac{4\pm i\sqrt{26}}{2}$, meaning

$$x_1 = \frac{4 + i\sqrt{26}}{2}$$
 or $x_2 = \frac{4 - i\sqrt{26}}{2}$

EXERCISE

Find the complex roots of each of the following equations:

$$1 x^2 - 2x + 5 = 0$$

2
$$x^2 + 4x + 13 = 0$$

3
$$x^2 - 2x + 10 = 0$$

4
$$x^2 - 6x + 25 = 0$$

5
$$x^2 - 8x + 20 = 0$$

6
$$x^2 + 4x + 5 = 0$$

7
$$x^2 - 12x + 40 = 0$$

8
$$x^2 + 2x + 50 = 0$$

9
$$x^2 + 8x + 17 = 0$$

10
$$x^2 - 10x + 34 = 0$$

11
$$2x^2 - 2x + 5 = 0$$

$$12 9x^2 + 6x + 10 = 0$$

13
$$4x^2 - 8x + 5 = 0$$

14
$$5x^2 - 6x + 5 = 0$$

15
$$13x^2 + 10x + 13 = 0$$

$$16 x^2 - 2x + 4 = 0$$

17
$$x^2 + 4x + 9 = 0$$

18
$$x^2 - 6x + 16 = 0$$

19
$$x^2 + 8x + 19 = 0$$

20
$$x^2 - x + 1 = 0$$

.i⊅ ± ξ .iγ ± 1−		.is ± i .is ± i		$-2 \pm 3i.$.is ± 1 .is ± 4	
ir = ir	8	.is ± 8	L	$.i \pm 2-$	9	$4 \pm 2i$	<u> </u>
$i \pm \frac{I}{\xi}$	71	$\frac{1}{2} \pm \frac{3}{2}i.$	11	.i£ ± ≷	01	.i ± 4∕-	6
$i\overline{\epsilon}V \pm i$	91	$-\frac{5}{151} \pm \frac{12}{15}$	S١	$.i\frac{1}{\xi}\pm\frac{\xi}{\xi}$	ħΙ	$1 \pm \frac{1}{2}i$.	εī
$i\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$	07	$.i\overline{\epsilon}V\pm 4-$	61	.i <u>√</u> √ ± €	81	$.i\overline{c}V\pm2-$	Δī

Equality of two complex numbers

Consider two complex numbers

$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$
 $z_1 = z_2$ when $a_1 = a_2$ and $b_1 = b_2$
or $\text{Re}(z_1) = \text{Re}(z_2)$ and $\text{Im}(z_1) = \text{Im}(z_2)$

Example: $z_1 = 3+ib$ and $z_2 = x+5 + 9i$

Knowing that $z_1 = z_2$, work out x and b

Find z so that $z + 2z^*=6+3i$

Method:

EXERCISE

- 1 Find the value of each of the real constants a and b such that $(a + 3i)^2 = 8b + 30i$.
- **2** Find the value of each of the real constants p and q such that (3+4i)(p+2i)=q+26i.
- **3** Find the value of each of the real constants t and u such that $(2 + 2i)^2(t + 3i) = u + 32i$.
- 4 Find the complex number z so that $3z + 4z^* = 28 + i$.
- **5** Find the complex number z so that $z + 3z^* = 12 8i$.
- **6** Find the complex number z so that $z 4iz^* + 2 + 7i = 0$.

$$7 + 7 = 2$$
 9

 $\dot{i} + \xi = 3$

 $\dot{I} - \dot{P} = 3$ \dot{P}

7 - 7 = 4

 $L = b' \leq d$ 7

 $\zeta = q \cdot \zeta = v \cdot 1$