D1

Algorithms you need to know!
with
Prim

Kruskal

Djikstra

and others
Learn these and the exam will be a doddle!

KRUSKAL’S ALGORITHM

This is an algorithm for finding a minimum spanning tree, or minimum connector.

This is a spanning tree such that the total length of its edges is as small as possible.

Step 1
Rank the arcs in ascending order of weight

Step 2
Select the arc of least weight and use this to start the tree

Step 3
Choose the next smallest arc and add this to the tree UNLESS IT COMPLETES A CYCLE in which case reject it and proceed to the next smallest arc

Step 4
Repeat Step 3 until all vertices are included in the tree

PRIM’S ALGORITHM
Step 1

Choose a starting vertex

Step 2
Connect it to the nearest vertex using the least arc

Step 3
Connect the nearest vertex not in the tree, to the tree, using the least arc

(In order to do this, look at all the arcs that link vertices in the tree with those not in the tree, choose the smallest and use that to add the vertex, and its arc, to the tree)

Step 4

Repeat step 3 until all of the vertices are
connected

MATRIX FORM OF PRIM’S ALGORITHM

A network may be described using a DISTANCE MATRIX
Step 1
Choose a starting vertex and delete all elements in that vertex’s row and arrow its column

Step 2

Neglecting all deleted terms, scan all arrowed




columns for the lowest available element and




circle that element

Step 3

Delete the circled element’s row and arrow its




column

Step 4

Repeat steps 2 and 3 until all rows deleted

Step 5
The spanning tree is formed by the circled arcs

DIJKSTRA’S ALGORITHM
This is for finding the shortest path in a network.

Use the following type of box:

	Vertex letter
	Order of selection
	Final values

	Working values


Step 1
Label the start vertex S with a permanent label of 0

Step 2

Put a temporary label on each vertex that can

be reached directly from the vertex that has just received a permanent label.  The temporary label must be equal to the sum of the permanent label and the weight of the arc linking it directly to the vertex.  If there is




already a temporary label at the vertex, it is




only replaced if the new sum is smaller.

Step 3

Select the minimum temporary label and make




it permanent.

Step 4

Repeat steps 2 and 3 until the destination




vertex T receives its permanent label.

Step 5

Trace back from T to S including an arc AB




whenever the permanent label of B (



permanent label of A = the weight of AB, given




that B already lies on the path
A PLANARITY ALGORITHM

This can only be applied to graphs that have a Hamiltonian cycle (a cycle that passes through every vertex of the graph once and only once, and returns to its start vertex)

Step 1

Identify a Hamiltonian cycle in the graph

Step 2
Redraw the graph so that the Hamiltonian cycle forms a regular polygon and all edges are




drawn as straight lines in the polygon

Step 3

Choose any edge AB and decide this will stay




inside the polygon

Step 4

Consider any edges that cross AB




(a)  if it is possible to move all these outside




      without producing crossings, go to step 5




(b)  if it is not possible then the graph is non




      planar

Step 5

Consider each remaining crossing inside and




see if any edge may be moved outside to




remove it, without creating a crossing inside

Step 6

Stop when all crossings inside have been




considered




(a)  if there are no crossings inside or outside




      then the graph is planar




(b)  if there is a crossing inside that cannot be




       removed then the graph is non-planar

THE CHINESE POSTMAN PROBLEM

If the graph is Eulerian it is traversable.

If it has some odd vertices then some arcs will have to be repeated.  These repeats will be such that when added to the graph it will make the odd vertices even!  This new graph is now Eulerian and therefore traversable.  We need to find the repeats that make the total distance of these repeats as small as possible.

Step 1
Identify all the odd vertices

Step 2
Form all possible pairings of odd vertices

Step 3
For each pairing find the arcs that make the total



distance of repeats as small as possible

Step 4
Choose the pairing with the smallest sum and add



this to the graph

Step 5
Find a route that works and add the smallest sum



found in Step 4 to the sum of all the weights in the



original graph to find the length of the required



route.

Note:

1)
Make sure you consider all possible pairings

2)
Make it clear which pairs you are using

3)
Remember to state the route at the end!

THE SIMPLEX ALGORITHM

Method
a)   Since we are only interested in the boundary, we need to convert the inequalities into equalities by introducing slack variables, one for each inequality.

b)   A Simplex tableau is created with one row for each constraint, plus one for the objective function, and one column for each variable (including the slack variables) and one extra for the values and another to explain the row operations used.

The equations are (rewritten if necessary) so that all the variables are on the left-hand side and the right-hand side holds only the number term.

The constraints and objective function are entered into the tableau (the objective row should, at this point, contain some negative numbers)

Step 1
The objective row is scanned and the column containing the most negative term is selected (pivotal column) - indicate with an arrow

Step 2
Divide the value term in each row by the entry in the pivotal column

((-values)  The pivot (element) is that which yields the least (non-negative) result.  Indicate the pivotal row with an arrow and circle the pivot.

Step 3

Divide the whole pivotal row by the pivot (this leaves the number 1 in place of the pivot) and change the basic variables

Step 4
The aim now is to get zeros everywhere else in the selected column.  This is done by adding to each row, multiples of the new pivotal row.

The new rows form the next tableau.

(You should now have zeros in the pivotal column except for a one where the pivot was)

Step 5
Steps 1 to 4 are repeated until the objective row contains no negative elements.

At this point, the objective has been attained.

Step 6
To “decode” the information, read down the “basic variable” column, the number in the value column gives the value of that variable.

The value of all other variables not present in the final tableau is zero.

This is the optimal solution.

BUBBLE-SORT ALGORITHM

Assuming you are “bubbling” from right to left:

Step 1

Compare the last two numbers on the extreme right.  If the smaller number is on the right, swap the two numbers and reorder the list, if not, leave them.

Step 2
Move one step back in the list (to the left) and compare the two numbers.  If the smaller is on the right swap the two numbers and reorder the list, if not, leave them.

Step 3

Repeat Step 2 until the two numbers on the extreme left have been compared, then return to Step 1.

Step 4

Repeat Step 3 until all the numbers are in order (i.e. no more swaps are performed in a pass)

QUICK-SORT ALGORITHM

Step 1

Locate the pivot element (use the element at the mid-point)

Step 2

Split the list into two sub-lists.

Sublist L1 contains those numbers less than or equal to the pivot and are written to the left of the pivot.

Sublist L2 contains those numbers greater than the pivot element and are written to the right of the pivot.

Do not reorder the numbers in the sub-lists
Step 3

Repeat Step 2 on each sub-list and each successive sub-list

Step 4

Stop when each sub-list contains only one number.  The list is now sorted!

FIRST-FIT ALGORITHM

Take the items in the order given and place each item in the first available bin that can take it, starting from Bin 1 each time.

FIRST-FIT DECREASING ALGORITHM

Firstly, reorder the items so that they are in decreasing order.

Then apply the first-fit algorithm to the reordered list.

FULL-BIN PACKING

Here we use observations to find combinations of items that will fill a bin.

Pack those items first.  Any remaining items are placed in the next available bin that can take the item, starting from Bin 1 each time.

BINARY SEARCH ALGORITHM

This only applies to a list of names in alphabetical order or a list of numbers in increasing order.

We define the midpoint of a list of N names, numbered N1, N1+1,..., N2
as [(N1+N2)/2]  where [x] = the smallest integer greater than or equal to x

We wish to search the list for a name, Fred, say.

Step 1

The algorithm compares Fred with the middle name in the list.

Either
a)  the name Fred is found to be at this position,

b)  the name Fred occurs before the middle of the           list

c)  the name Fred occurs after the middle of the list

Step 2

If a) occurs, the search is over.

If b) occurs, the search continues with Step 1 on a reduced list consisting of those names before the middle name.

If c) occurs, the search continues with Step 2 on a reduced list consisting of those names after the middle name.

Stop when Fred has been found or when it has been shown that Fred does not appear on the list.
At each stage half of the remaining list is discarded (hence the name of the algorithm).

THE CRITICAL PATH ALGORITHM

Step 1 - The Forward Pass
This finds the earliest time you can arrive at each event having completed all of the activities that feed into that event.  Start at the beginning with a zero and work from left to right until you reach the last event.  If there is more than one activity that feeds into the event you must find the times given by each and take the latest since this is the earliest all the activities will be done.

(“The latest early time”!!!)

Step 2 - The Backward Pass

This finds the latest possible time you can start each activity so that you will reach the later event having completed all of the activities that feed into that event.  Start at the end with the final time you found in the forward pass and work from right to left until you reach the first event.  If more than one activity has the same starting point then you have to work out the latest starting time for each and take the earliest since this will be the latest that all the activities will be done.

(“The earliest late time”!!!)

The FLOAT on an activity finds out how much ‘slack’ there is in running that activity.  The total float represents the maximum possible delay of each activity without delaying the completion of the entire project.

Total Float = Latest finish time ( earliest start time ( duration of activity



The CRITICAL ACTIVITIES are those that, if delayed, will delay the completion of the entire project.

For these activities, the two numbers in the event boxes are the same both at the start and end of the activity. (“Double Dominos”)

The total float of a critical activity is zero.

The CRITICAL PATH is the path connecting the critical activities from start to finish. The length of the critical path is the shortest time needed to complete the project and therefore should equal the “double” number written in the end event.

Note:  the path may split into two or even more than two alternative routes in which case there will be more than one critical path and you may need to state all of them.

THE MAXIMUM MATCHING ALGORITHM

This improves an existing matching, if possible, by first establishing an alternating path between vertices not in the current matching.  The status of the edges are then changed to produce an improved matching.

(If the current matching is maximal, no alternating path will be found)

Step 1
Start with any non-trivial matching M

Step 2
Search for an alternating path

Step 3
Construct a better matching M( by changing the status of the edges in the alternating path and return to Step 2 with M( replacing M

Step 4
Stop when no alternating path can be found.  The matching is then maximal.
MAXIMUM FLOW ALGORITHM
Step 1

Obtain an initial flow by inspection

Step 2
Find flow augmenting paths by using the labelling procedure until no further flow augmenting paths can be found.

Step 3

Check that the flow obtained is maximal by using the max flow - min cut theorem and finding a cut whose capacity is equal to the value of the flow.
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