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Section A (24 marks)

1 A rocket in deep space starts from rest and moves in a straight line. The initial mass of the rocket is
m0 and the propulsion system ejects matter at a constant mass rate k with constant speed u relative to
the rocket. At time t the speed of the rocket is v.

(i) Show that while mass is being ejected from the rocket, (m
0
− kt)dv

dt
= uk. [5]

(ii) Hence find an expression for v in terms of t. [4]

(iii) Find the speed of the rocket when its mass is 1
3
m0. [3]

2 A car of mass m kg starts from rest at a point O and moves along a straight horizontal road. The
resultant force in the direction of motion has power P watts, given by P = m(k2 − v2), where v m s−1

is the velocity of the car and k is a positive constant. The displacement from O in the direction of
motion is x m.

(i) Show that ( k2

k2 − v2
− 1)dv

dx
= 1, and hence find x in terms of v and k. [9]

(ii) How far does the car travel before reaching 90% of its terminal velocity? [3]

Section B (48 marks)

3 A circular disc of radius a m has mass per unit area ρ kg m−2 given by ρ = k(a + r), where r m is
the distance from the centre and k is a positive constant. The disc can rotate freely about an axis
perpendicular to it and through its centre.

(i) Show that the mass, M kg, of the disc is given by M = 5
3
kπa3, and show that the moment of

inertia, I kg m2, about this axis is given by I = 27
50

Ma2. [9]

For the rest of this question, take M = 64 and a = 0.625.

The disc is at rest when it is given a tangential impulsive blow of 50 N s at a point on its circumference.

(ii) Find the angular speed of the disc. [4]

The disc is then accelerated by a constant couple reaching an angular speed of 30 rad s−1 in 20 seconds.

(iii) Calculate the magnitude of this couple. [3]

When the angular speed is 30 rad s−1, the couple is removed and brakes are applied to bring the disc
to rest. The effect of the brakes is modelled by a resistive couple of 3θ̇ N m, where θ̇ is the angular
speed of the disc in rad s−1.

(iv) Formulate a differential equation for θ̇ and hence find θ̇ in terms of t, the time in seconds from
when the brakes are first applied. [7]

(v) By reference to your expression for θ̇ , give a brief criticism of this model for the effect of the
brakes. [1]
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4 A uniform smooth pulley can rotate freely about its axis, which is fixed and horizontal. A light elastic
string AB is attached to the pulley at the end B. The end A is attached to a fixed point such that the
string is vertical and is initially at its natural length with B at the same horizontal level as the axis. In
this position a particle P is attached to the highest point of the pulley. This initial position is shown in
Fig. 4.1.

The radius of the pulley is a, the mass of P is m and the stiffness of the string AB is
mg
10a

.

P
P

B

B

A A

Natural
length of
string

Fig. 4.1 Fig. 4.2

�

(i) Fig. 4.2 shows the system with the pulley rotated through an angle θ and the string stretched.
Write down the extension of the string and hence find the potential energy, V , of the system in

this position. Show that
dV
dθ

= mga( 1
10

θ − sin θ). [6]

(ii) Hence deduce that the system has a position of unstable equilibrium at θ = 0. [6]

(iii) Explain how your expression for V relies on smooth contact between the string and the pulley.
[2]

Fig. 4.3 shows the graph of the function f(θ) = 1
10

θ − sin θ .

�

f( )�

Fig. 4.3
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(iv) Use the graph to give rough estimates of three further values of θ (other than θ = 0) which give
positions of equilibrium. In each case, state with reasons whether the equilibrium is stable or
unstable. [6]

(v) Show on a sketch the physical situation corresponding to the least value of θ you identified in
part (iv). On your sketch, mark clearly the positions of P and B. [2]

(vi) The equation f(θ) = 0 has another root at θ ≈ −2.9. Explain, with justification, whether this
necessarily gives a position of equilibrium. [2]
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4764 Mechanics 4 
      
1(i) If mδ  is change in mass over time tδ      
 PCLM )())(( uvmvvmmmv −+++= δδδ      [N.B. 

0<mδ ] 
M1 Change in momentum over time δt   

 
t
mu

t
vm

t
mu

t
vmm

d
d

d
d0)( −=⇒=++

δ
δ

δ
δδ  

M1 
A1 

Rearrange to produce DE 
Accept sign error 

 
 

 
0

d
d
m k m m kt
t

= − ⇒ = −  M1 Find m in terms of t   

 
0

d( )
d
vm kt uk
t

⇒ − =  E1 Convincingly shown   

     5 
(ii) 

0

dukv t
m kt

=
−∫  M1 Separate and integrate   

 0ln( )u m kt c= − − +  A1 cao (allow no constant)   
 00, 0 lnt v c u m= = ⇒ =  M1 Use initial condition   
 

0

0

ln
m

v u
m kt

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 A1 All correct   

     4 
(iii) M1 Find expression for mass or time   
 

1 1
0 0 03 3m m m kt m= ⇒ − =  

A1 Or kmt 3/2 0=    
 ln 3v u⇒ =  A1    
     3 
      
      
2(i) P Fv=  M1 Used, not just quoted   
 d

d
vmv v
x

=  M1 Use N2L and expression for 
acceleration   

 ( )2 2 2d
d

vmv m k v
x

⇒ = −  A1 Correct DE   

 2

2 2
d 1
d

v v
xk v

⇒ =
−

 M1 Rearrange   

 2

2 2
d1 1
d

k v
xk v

⎛ ⎞
⇒ − =⎜ ⎟⎜ ⎟−⎝ ⎠

 E1 Convincingly shown   

 2

2 2 1 d dk v x
k v

⎛ ⎞
− =⎜ ⎟⎜ ⎟−⎝ ⎠

∫ ∫  M1 Separate and integrate   

 1
2 ln k vk v x c

k v
+⎛ ⎞ − = +⎜ ⎟−⎝ ⎠

 A1 LHS   

 0, 0 0x v c= = ⇒ =  M1 Use condition   
 1

2 ln k vx k v
k v

+⎛ ⎞= −⎜ ⎟−⎝ ⎠
 A1 cao   

     9 
(ii) Terminal velocity when acceleration zero M1    
 v k⇒ =  A1    
 ( )1 1

2 2
1.90.9 ln 0.9 ln19 0.9
0.1

v k x k k k⎛ ⎞= ⇒ = − = −⎜ ⎟
⎝ ⎠

≈ 

0.572k 
F1 Follow their solution to (i)   

     3 
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3(i) M1 Use circular elements (for M or I)   
 ( )

0
2 d

a
M k a r r rπ= +∫  M1 Integral for mass   

 M1 Integrate (for M or I)   
 

2 31 1
2 3 0

2
a

k ar rπ ⎡ ⎤= +⎣ ⎦  A1 For […]   
 35

3 k aπ=  E1    
 ( ) 2

0
2 d

a
I k a r r r rπ= + ⋅∫  M1 Integral for I   

 4 51 1
4 5 0

2
a

k ar rπ ⎡ ⎤= +⎣ ⎦  A1 For […]   

 59
10 k aπ=  A1 cao   

 227
50 Ma=  E1 Complete argument (including mass)   

     9 
(ii) 13.5I =  B1 Seen or used (here or later)   
 0.625 50 Iω× =  M1 Use angular momentum   
  M1 Use moment of impulse   
 2.31ω⇒ ≈  A1 cao   
     4 
(iii) 30 2.31 1.38

20
θ −= ≈��  M1 Find angular acceleration   

 Couple Iθ= ��  M1 Use equation of motion   
 18.7≈  F1 Follow their ω and I   
     3 
(iv) 3Iθ θ= −�� �  B1 Allow sign error and follow their I 

(but not M)   

 
θθ ��

3
d
d −=

t
I  M1 Set up DE for θ�  (first order)   

 d 3 dt
I

θ
θ

= −∫ ∫
�
�  M1 Separate and integrate   

 
ln

4.5
t cθ = − +�  B1 ( )θ� of multipleln  seen   

 / 4.5e tAθ −=�  M1 Rearrange, dealing properly with 
constant   

 0, 30 30t Aθ= = ⇒ =�  M1 Use condition on θ�    
 / 4.530e tθ −=�  A1    
     7 
(v) Model predicts θ�  never zero in finite time. B1    
     1 
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4(i) ( )21

2 cos
10
mgV a mga

a
θ θ⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (relative to centre 

of pulley) 
M1 EPE term   

  B1 Extension aθ=    
  M1 GPE relative to any zero level   
  A1 (± constant)   
 21

2
d 2 sin
d 10
V mg a mga

a
θ θ

θ
⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

 M1 Differentiate   

 ( )1
10

d sin
d
V mga θ θ
θ

= −  E1    

     6 
(ii) 

( )( )1
10

d0 0 sin 0 0
d
V mgaθ
θ

= ⇒ = − =  M1 Consider value of d
d
V
θ

   

 hence equilibrium E1    
 M1 Differentiate again   
 ( )

2
1

102
d cos
d

V mga θ
θ

= −  A1    
 (0) 0.9 0V mga′′ = − <  M1 Consider sign of V ′′    
 hence unstable E1 V ′′  must be correct   
     6 
(iii) If the pulley is smooth, then the tension in the 

string is constant. B1    

 Hence the EPE term is valid. B1    
     2 
(iv) Equilibrium positions at 2.8θ = ,  B1 One correct   
 7.1θ =  B1 All three correct, no extras   
 and 8.4θ =   Accept answers in [2.7,3.0), [7,7.2], 

[8.3,8.5]   

 From graph, ( )(2.8) f 2.8 0V mga′′ ′= >  M1 Consider sign of V ′′  or f ′    
 hence stable at 2.8θ =  A1   
 ( )(7.1) f 7.1 0V mga′′ ′= < ⇒  unstable at 7.1θ =  A1   
 ( )(8.4) f 8.4 0V mga′′ ′= > ⇒  stable at 8.4θ =  A1 

Accept no reference to V ′′ for one 
conclusion but other two must relate 
to sign of V ′′ , not just f ′ .    

     6 
(v)     
     
     
     
     
 B1 P in approximately correct place   
 

 
 
 
 

 

B1 B in approximately correct place  2 

(vi) If 0θ <  then expression for EPE not valid M1    
 hence not necessarily an equilibrium position. A1    
     2 
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