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Section A (36 marks)

1 Differentiate 10x4 + 12. [2]

2 A sequence begins

1 2 3 4 5 1 2 3 4 5 1 . . .

and continues in this pattern.

(i) Find the 48th term of this sequence. [1]

(ii) Find the sum of the first 48 terms of this sequence. [2]

3 You are given that tan θ = 1
2

and the angle θ is acute. Show, without using a calculator, that cos2 θ = 4
5
.

[3]
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Fig. 4

Fig. 4 shows a sketch of the graph of y = f(x). On separate diagrams, sketch the graphs of the following,
showing clearly the coordinates of the points corresponding to A, B and C.

(i) y = 2f(x) [2]

(ii) y = f(x + 3) [2]

5 Find � (12x5 + 3
√

x + 7) dx. [5]

6 (i) Sketch the graph of y = sin θ for 0 ≤ θ ≤ 2π. [2]

(ii) Solve the equation 2 sin θ = −1 for 0 ≤ θ ≤ 2π. Give your answers in the form kπ. [3]
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7 (i) Find
5

∑
k=2

2k. [2]

(ii) Find the value of n for which 2n = 1
64

. [1]

(iii) Sketch the curve with equation y = 2x. [2]

8 The second term of a geometric progression is 18 and the fourth term is 2. The common ratio is
positive. Find the sum to infinity of this progression. [5]

9 You are given that log10 y = 3x + 2.

(i) Find the value of x when y = 500, giving your answer correct to 2 decimal places. [1]

(ii) Find the value of y when x = −1. [1]

(iii) Express log10(y4) in terms of x. [1]

(iv) Find an expression for y in terms of x. [1]

Section B (36 marks)

10
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Fig. 10

Fig. 10 shows a solid cuboid with square base of side x cm and height h cm. Its volume is 120 cm3.

(i) Find h in terms of x. Hence show that the surface area, A cm2, of the cuboid is given by

A = 2x2 + 480
x

. [3]

(ii) Find
dA
dx

and
d2A

dx2
. [4]

(iii) Hence find the value of x which gives the minimum surface area. Find also the value of the
surface area in this case. [5]
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11 (i) The course for a yacht race is a triangle, as shown in Fig. 11.1. The yachts start at A, then travel
to B, then to C and finally back to A.

N

A

C

B

72°302 m

348 m

Fig. 11.1

Not to scale

(A) Calculate the total length of the course for this race. [4]

(B) Given that the bearing of the first stage, AB, is 175◦, calculate the bearing of the second
stage, BC. [4]

(ii) Fig. 11.2 shows the course of another yacht race. The course follows the arc of a circle from P
to Q, then a straight line back to P. The circle has radius 120 m and centre O; angle POQ = 136◦.

O

P

Q

120 m

136°

Not to scale

Fig. 11.2

Calculate the total length of the course for this race. [4]
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12 (i)
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Fig. 12

Fig. 12 shows part of the curve y = x4 and the line y = 8x, which intersect at the origin and the
point P.

(A) Find the coordinates of P, and show that the area of triangle OPQ is 16 square units. [3]

(B) Find the area of the region bounded by the line and the curve. [3]

(ii) You are given that f(x) = x4.

(A) Complete this identity for f(x + h).
f(x + h) = (x + h)4 = x4 + 4x3h + . . . [2]

(B) Simplify
f(x + h) − f(x)

h
. [2]

(C) Find lim
h→0

f(x + h) − f(x)
h

. [1]

(D) State what this limit represents. [1]
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