

ADVANCED GCE MATHEMATICS (MEI)

4763/01

Mechanics 3

THURSDAY 17 JANUARY 2008

Afternoon

Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)

Graph paper

MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \, \mathrm{m \, s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 4 printed pages.

1 (a) (i) Write down the dimensions of force and the dimensions of density. [2]

When a wire, with natural length l_0 and cross-sectional area A, is stretched to a length l, the tension F in the wire is given by

$$F = \frac{EA(l - l_0)}{l_0}$$

where *E* is Young's modulus for the material from which the wire is made.

(ii) Find the dimensions of Young's modulus E. [3]

A uniform sphere of radius r is made from material with density ρ and Young's modulus E. When the sphere is struck, it vibrates with periodic time t given by

$$t = kr^{\alpha} \rho^{\beta} E^{\gamma}$$

where k is a dimensionless constant.

- (iii) Use dimensional analysis to find α , β and γ . [5]
- (b) Fig. 1 shows a fixed point A that is 1.5 m vertically above a point B on a rough horizontal surface. A particle P of mass 5 kg is at rest on the surface at a distance 0.8 m from B, and is connected to A by a light elastic string with natural length 1.5 m.

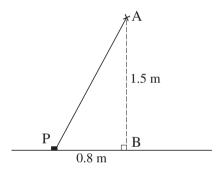


Fig. 1

The coefficient of friction between P and the surface is 0.4, and P is on the point of sliding. Find the stiffness of the string. [8]

© OCR 2008 4763/01 Jan08

- 2 (a) A small ball of mass 0.01 kg is moving in a vertical circle of radius 0.55 m on the smooth inside surface of a fixed sphere also of radius 0.55 m. When the ball is at the highest point of the circle, the normal reaction between the surface and the ball is 0.1 N. Modelling the ball as a particle and neglecting air resistance, find
 - (i) the speed of the ball when it is at the highest point of the circle, [3]
 - (ii) the normal reaction between the surface and the ball when the vertical height of the ball above the lowest point of the circle is 0.15 m. [5]
 - (b) A small object Q of mass $0.8 \, \text{kg}$ moves in a circular path, with centre O and radius r metres, on a smooth horizontal surface. A light elastic string, with natural length $2 \, \text{m}$ and modulus of elasticity $160 \, \text{N}$, has one end attached to Q and the other end attached to O. The object Q has a constant angular speed of $\omega \, \text{rad s}^{-1}$.

(i) Show that
$$\omega^2 = \frac{100(r-2)}{r}$$
 and deduce that $\omega < 10$. [4]

- (ii) Find expressions, in terms of *r* only, for the elastic energy stored in the string, and for the kinetic energy of Q. Show that the kinetic energy of Q is greater than the elastic energy stored in the string.
- (iii) Given that the angular speed of Q is 6 rad s^{-1} , find the tension in the string. [3]
- A particle is oscillating in a vertical line. At time t seconds, its displacement above the centre of the oscillations is x metres, where $x = A \sin \omega t + B \cos \omega t$ (and A, B and ω are constants).

(i) Show that
$$\frac{d^2x}{dt^2} = -\omega^2x$$
. [3]

When t = 0, the particle is 2 m *above* the centre of the oscillations, the velocity is 1.44 m s⁻¹ *downwards*, and the acceleration is 0.18 m s⁻² *downwards*.

(ii) Find
$$A, B$$
 and ω .

- (iii) Show that the period of oscillation is 20.9 s (correct to 3 significant figures), and find the amplitude.
- (iv) Find the total distance travelled by the particle between t = 12 and t = 24. [5]

[Question 4 is printed overleaf.]

© OCR 2008 4763/01 Jan08

4 Fig. 4.1 shows the region *R* bounded by the curve $y = x^{-\frac{1}{3}}$ for $1 \le x \le 8$, the *x*-axis, and the lines x = 1 and x = 8.

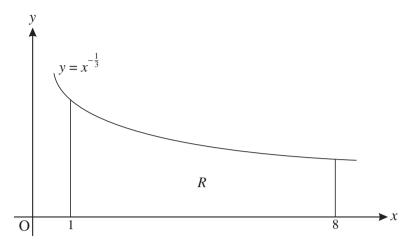


Fig. 4.1

- (i) Find the x-coordinate of the centre of mass of a uniform solid of revolution obtained by rotating R through 2π radians about the x-axis. [6]
- (ii) Find the coordinates of the centre of mass of a uniform lamina in the shape of the region R. [8]
- (iii) Using your answer to part (ii), or otherwise, find the coordinates of the centre of mass of a uniform lamina in the shape of the region (shown shaded in Fig. 4.2) bounded by the curve $y = x^{-\frac{1}{3}}$ for $1 \le x \le 8$, the line $y = \frac{1}{2}$ and the line x = 1.

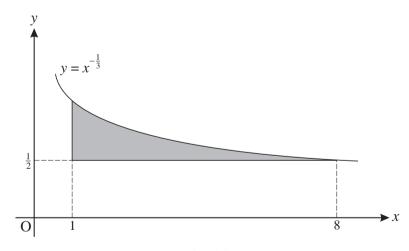


Fig. 4.2

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2008 4763/01 Jan08

4763 Mechanics 3

1(a)(i)	[Force] = MLT ⁻²	B1	
. (ω)(ι)	[Density] = ML ⁻³	B1	
		2	
(ii)	$[F]$ $[F][l_0]$ $(MLT^{-2})(L)$	B1	for $[A] = L^2$
	$[E] = \frac{[F][l_0]}{[A][l - l_0]} = \frac{(M L T^{-2})(L)}{(L^2)(L)}$	M1	Obtaining the dimensions of <i>E</i>
	$= M L^{-1} T^{-2}$	A1 3	
(iii)	$T = L^{\alpha} (M L^{-3})^{\beta} (M L^{-1} T^{-2})^{\gamma}$	3	
	$-2\gamma = 1$, $\beta + \gamma = 0$		
	$\gamma = -\frac{1}{2}$	B1 cao	
	$\beta = \frac{1}{2}$	F1	
	$\begin{vmatrix} \alpha - 3\beta - \gamma = 0 \\ \alpha = 1 \end{vmatrix}$	M1 A1	Obtaining equation involving α , β , γ
	$\alpha = 1$	A1 5	
(6)	AP = 1.7 m	B1	
(b)	AP = 1.7 m $F = T \cos \theta$	M1	Resolving in any direction
	$R + T\sin\theta = 5 \times 9.8$	M1	Resolving in another direction
			(M1 for resolving requires no force omitted, with attempt to resolve all appropriate forces)
	$T\cos\theta = 0.4(49 - T\sin\theta)$	M1	Using $F = 0.4R$ to obtain an
	$\frac{8}{17}T = 0.4(49 - \frac{15}{17}T)$	A1	equation involving just one force (or <i>k</i>)
	T = 23.8	A1	Correct equation <i>Allow</i> T cos 61.9 etc
	T = k(1.7 - 1.5) Stiffness is 119 N m ⁻¹	M1	or $R = 28$ or $F = 11.2$ May be
	Suilless is 119 N m	A1	implied
			Allow M1 for $T = \frac{\lambda}{1.5} \times 0.2$
		8	If $R = 49$ is assumed, max
			marks are B1M1M0M0A0A0M1A0

	Г	1	
2(a)(i)	$0.1 + 0.01 \times 9.8 = 0.01 \times \frac{u^2}{0.55}$	M1 A1	Using acceleration $u^2/0.55$
	Speed is $3.3 \mathrm{ms^{-1}}$	A1	
		3	
(ii)	$\frac{1}{2}m(v^2 - u^2) = mg(2 \times 0.55 - 0.15)$		
	_	M1	Using conservation of energy
	$\frac{1}{2}(v^2 - 3.3^2) = 9.8 \times 0.95$	A1	
	$v^2 = 29.51$		(ft is $v^2 = u^2 + 18.62$)
	v^2		
	$R - mg\cos\theta = m\frac{v^2}{a}$		
	0.4 29.51	M1	Forces and acceleration
	$R - 0.01 \times 9.8 \times \frac{0.4}{0.55} = 0.01 \times \frac{29.51}{0.55}$	A1	towards centre
	Normal reaction is 0.608 N		
		A1	(ft is $\frac{u^2 + 22.54}{55}$)
		5	55
(b)(i)	$T = 0.8 r \omega^2$	B1	
	T 160		
	$T = \frac{160}{2}(r-2)$	B1	
	$\omega^2 = \frac{80(r-2)}{0.8r} = \frac{100(r-2)}{r}$		
	$\omega = \frac{0.8r}{0.8r} = \frac{r}{r}$	E1	
	$\omega^2 = 100 - \frac{200}{\pi} < 100$, so $\omega < 10$		
	r 100, 30 to 10	E1	
		4	
(ii)	$EE = \frac{1}{2} \times \frac{160}{2} \times (r-2)^2 = 40(r-2)^2$	B1	
	$\frac{2}{2}$	ы	
	$KE = \frac{1}{2}m(r\omega)^2$	M1	Use of $\frac{1}{2}mv^2$ with $v = r\omega$
	$\frac{1}{1}$ $\frac{1}$		2
	$= \frac{1}{2} \times 0.8 \times r^2 \times \frac{100(r-2)}{r}$		
	=40r(r-2)	A 4	
	Since $r > r - 2$, $40r(r - 2) > 40(r - 2)^2$	A1	
	i.e. KE > EE		
	I.E. NE / EE	E1	From fully correct working only
		4	
(iii)	100(r-2)		
("")	When $\omega = 6$, $36 = \frac{100(r-2)}{r}$	M1	Obtaining <i>r</i>
	r = 3.125]
	T = 80(r-2) = 80(3.125-2)	M1	
	Tension is 90 N	A1 cao	
		3	
L		l	

3 (i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = A\omega\cos\omega t - B\omega\sin\omega t$	B1		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -A\omega^2 \sin \omega t - B\omega^2 \cos \omega t$	B1 ft		Must follow from their \dot{x}
	$= -\omega^2 (A\sin\omega t + B\cos\omega t) = -\omega^2 x$	E1	3	Fully correct completion SR For $\dot{x} = -A\omega\cos\omega t + B\omega\sin\omega t$ $\ddot{x} = -A\omega^2\sin\omega t - B\omega^2\cos\omega t$ award B0B1E0
(ii)	B=2	B1		
	$A\omega = -1.44$ $-B\omega^{2} = -0.18$ or $-0.18 = -\omega^{2}(2)$ $\omega = 0.3, A = -4.8$	M1 A1 cao M1 A1 cao A1 cao	6	Using $\frac{dx}{dt} = -1.44$ when $t = 0$ $\frac{d^2x}{dt^2} = -0.18$ when $t = 0$ (or $x = 2$)
(iii)	Period is $\frac{2\pi}{\omega} = \frac{2\pi}{0.3} = 20.94 = 20.9 \text{ s}$ (3 sf) Amplitude is $\sqrt{A^2 + B^2} = \sqrt{4.8^2 + 2^2} = 5.2 \text{ m}$	E1 M1 A1	3	or $1.44^2 = 0.3^2(a^2 - 2^2)$
(iv)	$x = -4.8 \sin 0.3t + 2 \cos 0.3t$ $v = -1.44 \cos 0.3t - 0.6 \sin 0.3t$ When t = 12, x = 0.3306 (v = 1.56) When t = 24, x = -2.5929 (v = -1.35)	M1 A1		Finding x when $t = 12$ and $t = 24$ Both displacements correct
	Distance travelled is $(5.2 - 0.3306) + 5.2 + 2.5929$ = 12.7 m	M1 M1 A1	5	Considering change of direction Correct method for distance ft from their A, B, ω and amplitude: Third M1 requires the method to be comparable to the correct one A1A1 both require $\omega \approx 0.3, \ A \neq 0, \ B \neq 0$ Note ft from $A = +4.8$ is $x_{12} = -3.92 \ (v < 0) \ x_{24} = 5.03 \ (v > 0)$ Distance is $(5.2 - 3.92) + 5.2 + 5.03 = 11.5$

		·	1
4 (i)	$V = \int_{1}^{8} \pi \left(x^{-\frac{1}{3}} \right)^{2} dx$	M1	π may be omitted throughout
	$=\pi \left[3x^{\frac{1}{3}}\right]_{1}^{8}=3\pi$	A1	
	$V \overline{x} = \int_{1}^{8} \pi x (x^{-\frac{1}{3}})^{2} \mathrm{d}x$	M1	
	$= \pi \left[\frac{3}{4} x^{\frac{4}{3}} \right]_{1}^{8} = \frac{45}{4} \pi$	A1	
	$\bar{x} = \frac{\frac{45}{4}\pi}{3\pi}$ $= \frac{15}{4} = 3.75$	M1	Dependent on previous M1M1
	4	A1 6	
(ii)	$A = \int_1^8 x^{-\frac{1}{3}} \mathrm{d}x$	M1	
	$= \left[\frac{3}{2} x^{\frac{2}{3}} \right]_{1}^{8} = \frac{9}{2} = 4.5$	A1	
	$A\overline{x} = \int_{1}^{8} x\left(x^{-\frac{1}{3}}\right) \mathrm{d}x$	M1	
	$= \left[\frac{3}{5} x^{\frac{5}{3}} \right]_{1}^{8} = \frac{93}{5} = 18.6$	A1	
	$\overline{x} = \frac{18.6}{4.5} = \frac{62}{15} (\approx 4.13)$	A1	
	$A\overline{y} = \int_{1}^{8} \frac{1}{2} (x^{-\frac{1}{3}})^{2} \mathrm{d}x$	M1	If $\frac{1}{2}$ omitted, award M1A0A0
	$= \left[\frac{3}{2} x^{\frac{1}{3}} \right]_{1}^{8} = \frac{3}{2} = 1.5$	A1	
	$\overline{y} = \frac{1.5}{4.5} = \frac{1}{3}$	A1 8	

(iii)	$(1)\left(\frac{\overline{x}}{\overline{y}}\right) + (3.5)\left(\frac{4.5}{0.25}\right) = (4.5)\left(\frac{62}{15}\right) = \left(\frac{18.6}{1.5}\right)$ $\overline{x} = 2.85$ $\overline{y} = 0.625$	M1 M1	Attempt formula for CM of composite body (one coordinate sufficient) Formulae for both coordinates; signs must now be correct, but areas (1 and 3.5) may be
		A1 A1	wrong. ft only if $1 < \overline{x} < 8$ ft only if $0.5 < \overline{y} < 1$ Other methods: M1A1 for \overline{x} M1A1 for \overline{y} (In each case, M1 requires a complete and correct method leading to a numerical value)