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Section A (54 marks)

Answer all the questions

(a) Fig. 1 shows the curve with polar equation r = a(1 — cos 20) for 0 < 6 < &, where a is a positive

constant.
O Ll
Fig. 1
Find the area of the region enclosed by the curve. [7]
(i) Given that f(x) = arctan(v/3 + x), find f’(x) and " (x). [4]
(ii) Hence find the Maclaurin series for arctan(v/3 + x), as far as the term in X2 [4]
h
(iii) Hence show that, if / is small, J x arctan( V3 + x) dx =~ %h3. [3]
—h

Find the 4th roots of 16j, in the form re’® where > 0 and - < 6 < 7. Illustrate the 4th roots on
an Argand diagram. [6]

(i) Show that (1 —2e%)(1 —2¢7%) =5 -4 cos 6. [3]

Series C and S are defined by

C=2cos0+4cos20+8cos30+ ... +2"cosnb,
S=2sin0+4sin260 + 8sin30 + ... + 2" sinnb.
2cos 0 —4 2" cos(n+1)0 + 2" cos n6

(ii) Show that C = 5 4cos0
for S. (9]

, and find a similar expression
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3  You are given the matrix M = ( _Z _? )
(i) Find the eigenvalues, and corresponding eigenvectors, of the matrix M. [8]
(ii) Write down a matrix P and a diagonal matrix D such that P'MP =D. [2]

(iii) Given that M" = (ccl Z), show that a = —% + % x 5", and find similar expressions for b, ¢ and d.
(3]
Section B (18 marks)
Answer one question
Option 1: Hyperbolic functions

4 (i) Given thatk > 1 and coshx = k, show that x = £ In(k + Vk* — 1). [5]

dx, giving the answer in an exact logarithmic form. [5]

2
1
(ii) Find J —_—
L Vax? -1

(iii) Solve the equation 6 sinh x — sinh 2x = 0, giving the answers in an exact form, using logarithms
where appropriate. (4]

(iv) Show that there is no point on the curve y = 6 sinh x — sinh 2x at which the gradient is 5. [4]

[Question 5 is printed overleaf.]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

2

. . t .
5 A curve has parametric equations x = T2 y= £3 — At, where A is a constant.
+

(i) Use your calculator to obtain a sketch of the curve in each of the cases
A=-1, A=0 and A=1.

Name any special features of these curves. [5]
(ii) By considering the value of x when ¢ is large, write down the equation of the asymptote. [1]
For the remainder of this question, assume that A is positive.
(iii) Find, in terms of A4, the coordinates of the point where the curve intersects itself. [3]
(iv) Show that the two points on the curve where the tangent is parallel to the x-axis have coordinates

A ar

s 27 [4]

Fig. 5 shows a curve which intersects itself at the point (2, 0) and has asymptote x = 8. The stationary
points A and B have y-coordinates 2 and 2.

»
>

2k

Fig. 5

2
(v) For the curve sketched in Fig. 5, find parametric equations of the form x = o2 y=b(£ - A1),
+

where a, A and b are to be determined. [5]
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4756 (FP2) Further Methods for Advanced Mathematics
1(a) M1 For [(1-cos20)* do
Area is Jﬂlaz(l_cos 20)? do A1 Correct integral expression
0’ including limits (may be implied
7 by later work)
:J %az(1—200529+%(1+COS49))d9 B1
0 For cos? 20 =4 (1+cos40)
:%az [%H—Sln29+ésm49]g B1B1B1
s fit Integrating a + bcos20 + c cos 40
Tara [ Max B2 if answer incorrect and
A1 no mark has previously been
7|lost]
(b)(i) ing 9 _
M1 Applying Earctanu T
or y__1
dx  sec’y
F)=—
1+ (3 +x) A1
- _o(3+x) M1 Applying chain (or quotient) rule
(1+(B+0?f Al .
(i) | f(O) =17 B1 Stated; or appearing in series
Accept 1.05
f'(0) =%, f"(0)=-5+3 M1 Evaluating f'(0) or £"(0)
arctan(\/g+x)=%ﬂ+%x—% 3X2+... A1A1 ft For %x and _%ﬁxz
4| ft provided coefficients are
non-zero
(@iii) | " 1 Lo ,
(Frx+gx" —qeV3x7 +.)dx
h , M1 Integrating (award if x is
:[%ﬁx2+%x3 —6—14x/§x4+... A1 ft missed)
h for Lx°
~(Lrh?+Lnt LB nt)
~Cah? - LR L3t
=13
A1 ag

Allow ft from a+1x+cx?
provided that a =0

Condone a proof which neglects
h4
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2(3) | 4th roots of 16j=16¢2"" are re’? where |
r=2 B1 Accept 164
O=x7 B1
T 2krm .
:§+T M1 Implied by at least two correct
P 3 s (ft) further values
TR TR R7 A1 or stating k=-2, —1, (0), 1
A
M1 Points at vertices of a square
centre O
or 3 correct points (ft)
i A1 or 1 point in each quadrant
6
|
M1 For ¢?e™1% =1
(O)() | (-2e)1-2e79)=1-2¢e% —2¢797 1+ 4 A1
=5-2(e'? +e71%)
=5-4cosd A1 ag
3
OR
(1-2cos@—2jsin @)1 -2cos @ + 2jsin &) M1
=(1-2cos0)* +4sin’ 0 A1
:1—4cosﬁ-i-4(cos2 0 +sin? 0)
=5—4cosf A1
(i) | c+jS=2e7 +4e%17 1839 4 . 42" "7 M1 Obtaining a geometric series
) 2€j0(1_(26j0)n) M1 Summing (MO for sum to
= 1—2ei? A1 infinity)
_2eM?(1-2"e"0)(1-2e717)
(1-2e%)1-2¢7%) M1
2ej9 _4_2n+le(n+l)j¢9 +2n+26nj19
B 5—-4cosd A2
Give A1 for two correct terms in
oo 2c0s0—4- 2" cos(n+1)8 + 2" cosnf MA numerator
5~ 4cosd A1 ag Equating real (or imaginary)
: n+l s nt2 - parts
S:251n9—2 sin(n+1)8 + 2" sinn@
5—4cosb
A1
9
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3 (i)

Characteristic equation is

(7T-2)(=1-2)+12=0 M1
AP —64+5=0
A=1,5 A1A1
wnen <=t 1y S w5
-4 —1)\y ¥ -4 =-2)\y 0
can be awarded for either
Tx+3y=x M1 eigenvalue
—4x-y=y Equation relating x and y
y=-2x, eigenvector is !
-2 A1 .
7 3 \(x x or any (non-zero) multiple
When 1=35, ( j( :5( )
-4 -1)\y y
7x+3y=>5x
—4x—-y=35y M1
) . (3
y=-3x, eigenvectoris ( j
-2 N SR (M-Al)x=Ax can earn
M1A1A1TMOM1AOM1AOQ
(i) 1 3
P=l_, _, B1 ft BO if P is singular
D= 1 0
o s B1 ft For B2, the order must be

consistent
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@iii) |m=pPDP! M1 May be implied
M"=PD" P! M1
1 0
=Ply 5P A1 ft Dependent on M1M1
(1 331 0Yi1(-2 -3 .
(1 3xs” l(—z —3] LoaNi( -2 -3
-2 -2xs)alz or (—2 —2]2(2><5” s”j
=%[_2+6Xi _3+3X5}1J Obtaining at least one element
4-4x3 6-2x5 M1 in a product of three matrices
a=-1+3x5"
b=—-3+3x5" Alag
c=1-5" d=3—-4x5"
Give A1 forone of b, ¢, d
A2
correct
SR If M"=P~'D" P is used,
max
marks are
MOM1AOB1M1A0A1
(d should be correct)
SR If their P is singular, max
marks
are MIM1A1BOMO
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4 (i) %(e" +e )=k M1 or coshx+sinhx=¢e”*
e —2ke* +1=0 M1 or k+k*-1=¢*
| 2
e :w:k k2 21
x=In(k+vk* =1) or In(k—vk* 1) A1 One value sufficient
2 2 122 722 1y
(k3K (k=K =) =k~ (k7 ) =1 M1 or coshx is an even function
In(k —Vk? —1) = In(———— ) = —In(k + VK> —1) (or equivalent)
k+vVk? -1
x=+In(k+vk? -1)
A1 ag
5
(i) M1 For arcosh or
In(Ax +VA2x% = ...)
A or any cosh substitution
, For arcosh2x or 2x=coshu or
2
J 1 dx = { %arcosh 2x } In(2x+v4x% —1) or In(x+4/x> —%)
2
1 vdxt -l 1 Al For 1 or [Ldu
=1 (arcosh 4 —arcosh 2 ) M1
1 Exact numerical logarithmic
= 1 In(4+15)-In2++3) ) A1 form
5
(iii) | 6sinh x —2sinh x coshx =0 M1
coshx=3 (or sinhx=0) M1 Obtaining a value for cosh x
x=0 B1
x=+In(3++/8) A1 or x=In(3£+8)
4
OR e* —6e* +6e" -1=0
(e* —)e* -6e* +1)=0 M2 or (e*—e ™ )e"+e ™ -6)=0
x=0 B1
x=In(3%+/8) A1
(v) d—y:6coshx—2005h2x B1
dx
If %zS then 6coshx—2(2cosh” x—1)=5 M1 Using cosh2x =2cosh” x-1
4cosh? x—6coshx+3=0
Discriminant D=6 —4x4x3=-12 M1 Considering D, or completing
square, or considering turning
Since D <0 there are no solutions A1 point
4
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OR Gradient g =6cosh x—2cosh2x B1
g'=6sinh x —4sinh 2x = 2 sinh x(3 -4 cosh x)
=0 when x=0 (only) M1

g"=6coshx—8cosh2x=-2 when x=0 M1
Max value g=4 when x=0
So g is never equal to 5 A1

January 2008

Final A1 requires a complete
proof showing this is the only
turning point
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5 (i) A=-1 A=0 A=1
A 4
y / 47 31
—-T = E - z B1B1B1
cusp loop B1B1 Two different features (cusp,
5 |loop, asymptote) correctly
identified
(i) | x=1 B1
1
(iii) |Intersects itself when y=0 M1
t=(£)J2 A1
A
—, 0
( 1+1° ) AT
3
(v) |dy .o, _
E—3t -1=0 M1
\F
t=%,=
3
_Hh A
C1+4 3+ A1 ag
A3 R
y_i( (?)2 —/1(3)2 J
M1 One value sufficient
(555 -+ =5)
L I P L I
L NERNE) 343
/4,13
:i —_—
27 A1 ag
4
(v) |From asymptote, a =8 B1
. . . A
From intersection point, 4y
' on point, 77 M1
1
A==
3 A1
, : /4/13
From maximum point, »,/— =2
27 M1
b=27 A1
5
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