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1  The differential equation (:173) + 2d—y

s +y = f(#) is to be solved for > 0 subject to the conditions that

d
d—ianndyszhentzO.

Firstly consider the case f(7) = 2.
(i) Find the solution for y in terms of t. [10]

Now consider the case f(¢) = e™.

(ii) Explain briefly why a particular integral cannot be of the form ae™ or ate™. Find a particular

integral and hence solve the differential equation, subject to the given conditions. [8]

(iii) For ¢ > 0, show that y > 0 and find the maximum value of y. Hence sketch the solution for ¢ > 0.

1

[You may assume that *e™ — 0ast— oo for any k.| [6]

2 A raindrop falls from rest through mist. Its velocity, vims~! vertically downwards, at time ¢ seconds
after it starts to fall is modelled by the differential equation

d
(1+t)d—‘;+3v:(1+t)g—3.

(i) Solve the differential equation to show that v = ig(l +1)—1+(1- ig)(l +1)7. [10]

The model is refined and the term —3 is replaced by the term —2v, giving the differential equation

d
(1+z)d—:+3v=(1+r)g—2v.

(ii) Find the solution subject to the same initial conditions as before. [9]

(iii) For each model, describe what happens to the acceleration of the raindrop as ¢ — oo. [5]
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The population, P, of a species at time ¢ years is to be modelled by a differential equation. The initial
population is 2000.

At first the model % = 0.5P is used.

(i) Find P in terms of r. [3]
. . . dP .
To take account of observed fluctuations, the model is refined to give i 0.5P + 170 sin 2t.

(ii) State the complementary function for this differential equation. Find a particular integral and
hence state the general solution. [8]

(iii) Find the solution subject to the given initial condition. [2]

dpP 2
The model is further refined to give i 0.5P + P3sin2t. This is to be solved using Euler’s method.

The algorithm is givenby 7 =7 +h, P =P + hpr.

1 1

(iv) Using a step length of 0.1 and the given initial conditions, perform two iterations of the algorithm
to estimate the population when 7 = 0.2. [4]

The population is observed to tend to a non-zero finite limit as  — oo, so a further model is proposed,
given by

[SIE

% :O‘SP(l N 121(:00) ’

(v) Without solving the differential equation,
(A) find the limiting value of P as t — oo, [3]

(B) find the value of P for which the rate of population growth is greatest. [4]

The simultaneous differential equations

T -3x+y+9,
% =-S5x+y+15,
are to be solved for 7 = 0.
(i) Show that @ + 2% +2x=06. [5]
de?2  Tdr
(ii) Find the general solution for x. [7]
(iii) Hence find the corresponding general solution for y. [3]
(iv) Find the solutions subject to the conditions that x =y = 0 when 7 = 0. [4]
(v) Sketch, on separate axes, graphs of the solutions for 7 > 0. [5]
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4758 Mark Scheme January 2008
4758 Differential Equations
1 o +2a+1=0 M1 Auxiliary equation
a =—1(repeated) A1
CF y=(A+Bt)e” F1  CF for their roots
Pl y=a B1 Constant PI
inDE = y=2 B1 Pl correct
y=2+(4+B)e” F1 Their Pl + CF (with two
arbitrary constants)
t=0,y=0=>0=2+4=>A4=-2 M1 Condition on y
y=(B-A-Bt)e™ M1 Differentiate (product rule)
t=0,y=0=>0=B-A=>B=-2 M1 Condition on y
y=2-(2+21)e" A1
[10]
(i) Both terms in CF hence will give zero if substituted in
E1
LHS
Pl y=bi*e™ B1
= (2bt—bt2)e—’,y :(2b—4bt+bz2)e—’
in DE = (2b — 4bt + bt +2(2bz—bt2)+bz2)e*f —¢ mq  Differentiate twice and
substitute
=>b=1 A1 Pl correct
y= (C+Dt+%t2)e“ F1 Thgir Pl + CF (with two
arbitrary constants)
t=0,y=0=0=C M1  Condition on y
. 2\ —
¥ =(D+t—C—Dt—%t )e !
t=0,y=0=>0=D-C=D=0 M1 Condition on y
y=1re” A1
[8]
(i) t>0=1r>0and e’ >0=p>0 E1
y:(t—%tz)e*’ $0 =0 t-172=0&1=00r2 M1 Solve j =0
Maximum at 1 =2,y =2¢™ A1 Maximum value of y
B1 Starts at origin
B1 Maximum at their value of y
B1 »>0
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20 dv 3 3
) E*‘mv = g—m M1 Rearrange
I = 3 ) =m0+ _ (144 M1  Attempt integrating factor
eXp( 1+ ) ¢ (1+1) A1 Correct
A1 Simplified
3dv 2 3 2 . .
(1+1) E+3(l+t) v=g(1+t) =3(1+¢)° F1 Multiply DE by their /
d 3 3 2
a((m) v)=g(1+e) =3(1+1)
(1+t)3v:j(g(1+t)3—3(1+t)2)dx M1 Integrate
=Lg(1+1) —(1+1) + 4 A1 RHS
v Z%g(l+t)—1+A(l+t)_3 F1 Divide by their / (must also divide constant)
t=0,y=0=>0=2g-1+4 M1  Use condition
v:%g(l+t)—1+(l—%g)(l+t)_3 E1 Convincingly shown
[10]
i
(i (1+t)%+5v:(1+t)g M1 Rearrange
LR
dr 1+¢ £
I= Sodr) =30+ Z (14 4Y M1 Attempt integrating factor
exp( [ dr) = (1+1) A1 Simplified
(1+t)5%+5(1+t)4 v=g(l+1) F1  Multiply DE by their /
d 5 5
a((m) v)=g(1+1)
(1+t)5v=jg(1+t)5dx M1 Integrate
=lg(1+1)° +B A1 RHS
v :%g(1+t)+B(l+t)_5 F1 Divide by their / (must also divide constant)
t=0v=0=>0=1g+B M1 Use condition
v Z%g(lﬂ—(lﬂ)fs) F1  Follow a non-trivial GS
[9]
(i) First model- &, . ! _ _
irst model: E=;g—3(l—;g>(l+t) M1  Find acceleration
As 1 — oo,(1+t)’4 50 B1 Identify term(s) — 0 in their solution for either
model
Hence acceleration tends to %g A1
Second model ﬂ:lg 1+5(1+1)° M1  Find acceleration
d ¢
Hence acceleration tends to ég A1
[5 ]
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3(i) P=Ae" M1  Any valid method
t=0,P=2000= 4=2000 M1  Use condition
P =2000¢" A1
[3]
(i) CF P=A4¢e" F1  Correct or follows (i)
Pl P=acos2t+bsin2t B1
P =-2asin2t +2bcos 2t M1  Differentiate
—2asin 2t +2bcos 2t = 0.5(acos 2t + bsin 2¢) +170sin 2t M1  Substitute
—2a=0.5b+170 M1  Compare coefficients
2b=0.5a M1  Solve
solving = a =-80,b =-20 A1
GS P = Ae""—80cos 2t —20sin 2t pq Their Pl + CF (with one arbitrary
constant)
[8]
(iii) t=0,P=2000= 4=2080 M1 Use condition
P =2080e"—80cos 2t —20sin 2¢ F1 Follow a non-trivial GS
[2]
(iv) t P P M1  Use of algorithm
0 2000 1000 A1 2100
0.1 2100 1082.58 A1 10825...
0.2 2208 A1 2208 7]
4
(v)  (A) Limiting value = P=0 M1 Set P=0
2
=P 1_L = M1 Solve
12000
(as limit non-zero) limiting value = 12000 A1 '_
3
(B) Growth rate max when
f(P):P - P Y max M1 Recognise expression to maximise
12000
, P} 1 P\ o
f'(P)=|1- - P|1- M1 Reasonable attempt at derivative
12000 2x12000 12000
f'(P)=0<]|1- cil — =0 M1 Set derivative to zero
12000 ) 2x12000
< P=8000 A1
(4]
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4@i) X=-3x+y M1 Differentiate first equation
=-3x+(-5x+y+15) M1 Substitute for y
y=3x-9+x M1 yinterms of x,x
X¥=-3x-5x+(3x—9+x)+15 M1  Substitute for y
X+2x+2x=6 E1
[5]
(i) A2 42442=0 M1  Auxiliary equation
A=—1%j A1
CF x=¢"'(Acost+ Bsint) M1 CF for complex roots
F1  CF for their roots
Pl x=a B1 Constant Pl
2a=6=>a=3 B1 Pl correct
GS x=3+e"'(Acost+Bsint) F1 Their CF + PI (with two arbitrary
constants)
[7]
(iii) y=3x-9+x M1 yinterms of x,x
=9+3¢'(Acost+Bsint)—-9
M1 Differentiate x and substitute
—e ' (Acost+Bsint)+e™ (—Asint+ Bcost)
y=e"((24+B)cost+(2B— A)sint) aq Constants must correspond with
those in x
[3]
(iv) 0=3+4=>4=-13 M1 Condition on x
0=24+B=B=6 M1 Condition on y
x=3+3e¢"(2sins—cosr) F1 Follow their GS
y=15¢""sint F1  Follow their GS
(4]
(v) X B1 Sketch of x starts at origin
B1 Asymptote x=3
3
1
|
B1 Sketch of y starts at origin
B1 Decaying oscillations (may
decay rapidly)
B1 Asymptote y=0
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