

ADVANCED GCE UNIT MATHEMATICS (MEI)

4769/01

Statistics 4

TUESDAY 5 JUNE 2007

Afternoon

Time: 1 hour 30 minutes

Additional Materials:
Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer any three questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

Option 1: Estimation

1 The random variable X has the continuous uniform distribution with probability density function

$$f(x) = \frac{1}{\theta}, \qquad 0 \le x \le \theta,$$

where θ ($\theta > 0$) is an unknown parameter.

A random sample of *n* observations from *X* is denoted by X_1, X_2, \ldots, X_n , with sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

- (i) Show that $2\overline{X}$ is an unbiased estimator of θ . [4]
- (ii) Evaluate $2\overline{X}$ for a case where, with n = 5, the observed values of the random sample are 0.4, 0.2, 1.0, 0.1, 0.6. Hence comment on a disadvantage of $2\overline{X}$ as an estimator of θ . [4]

For a general random sample of size n, let Y represent the sample maximum, $Y = \max(X_1, X_2, \ldots, X_n)$. You are given that the probability density function of Y is

$$g(y) = \frac{ny^{n-1}}{\theta^n}, \qquad 0 \le y \le \theta.$$

(iii) An estimator kY is to be used to estimate θ , where k is a constant to be chosen. Show that the mean square error of kY is

$$k^2 E(Y^2) - 2k\theta E(Y) + \theta^2$$

and hence find the value of k for which the mean square error is minimised. [12]

(iv) Comment on whether kY with the value of k found in part (iii) suffers from the disadvantage identified in part (ii). [4]

© OCR 2007 4769/01 Jun07

Option 2: Generating Functions

- 2 The random variable X has the binomial distribution with parameters n and p, i.e. $X \sim B(n, p)$.
 - (i) Show that the probability generating function of *X* is $G(t) = (q + pt)^n$, where q = 1 p. [4]
 - (ii) Hence obtain the mean μ and variance σ^2 of X. [6]
 - (iii) Write down the mean and variance of the random variable $Z = \frac{X \mu}{\sigma}$. [1]
 - (iv) Write down the moment generating function of X and use the linear transformation result to show that the moment generating function of Z is

$$\mathbf{M}_{Z}(\theta) = \left(q e^{-\frac{p\theta}{\sqrt{npq}}} + p e^{\frac{q\theta}{\sqrt{npq}}}\right)^{n}.$$
 [5]

- (v) By expanding the exponential terms in $M_Z(\theta)$, show that the limit of $M_Z(\theta)$ as $n \to \infty$ is $e^{\theta^2/2}$. You may <u>use</u> the result $\lim_{n \to \infty} \left(1 + \frac{y + f(n)}{n}\right)^n = e^y$ provided $f(n) \to 0$ as $n \to \infty$. [4]
- (vi) What does the result in part (v) imply about the distribution of Z as $n \to \infty$? Explain your reasoning briefly. [3]
- (vii) What does the result in part (vi) imply about the distribution of X as $n \to \infty$? [1]

Option 3: Inference

An engineering company buys a certain type of component from two suppliers, A and B. It is important that, on the whole, the strengths of these components are the same from both suppliers. The company can measure the strengths in its laboratory. Random samples of seven components from supplier A and five from supplier B give the following strengths, in a convenient unit.

The underlying distributions of strengths are assumed to be Normal for both suppliers, with variances 2.45 for supplier A and 1.40 for supplier B.

- (i) Test at the 5% level of significance whether it is reasonable to assume that the mean strengths from the two suppliers are equal. [10]
- (ii) Provide a two-sided 90% confidence interval for the true mean difference. [4]
- (iii) Show that the test procedure used in part (i), with samples of sizes 7 and 5 and a 5% significance level, leads to acceptance of the null hypothesis of equal means if $-1.556 < \bar{x} \bar{y} < 1.556$, where \bar{x} and \bar{y} are the observed sample means from suppliers A and B. Hence find the probability of a Type II error for this test procedure if in fact the true mean strength from supplier A is 2.0 units more than that from supplier B.
- (iv) A manager suggests that the Wilcoxon rank sum test should be used instead, comparing the median strengths for the samples of sizes 7 and 5. Give one reason why this suggestion might be sensible and two why it might not. [3]

Option 4: Design and Analysis of Experiments

An agricultural company conducts a trial of five fertilisers (A, B, C, D, E) in an experimental field at its research station. The fertilisers are applied to plots of the field according to a completely randomised design. The yields of the crop from the plots, measured in a standard unit, are analysed by the one-way analysis of variance, from which it appears that there are no real differences among the effects of the fertilisers.

A statistician notes that the residual mean square in the analysis of variance is considerably larger than had been anticipated from knowledge of the general behaviour of the crop, and therefore suspects that there is some inadequacy in the design of the trial.

- (i) Explain briefly why the statistician should be suspicious of the design. [2]
- (ii) Explain briefly why an inflated residual leads to difficulty in interpreting the results of the analysis of variance, in particular that the null hypothesis is more likely to be accepted erroneously. [3]

Further investigation indicates that the soil at the west side of the experimental field is naturally more fertile than that at the east side, with a consistent 'fertility gradient' from west to east.

(iii) What experimental design can accommodate this feature? Provide a simple diagram of the experimental field indicating a suitable layout. [4]

The company decides to conduct a new trial in its glasshouse, where experimental conditions can be controlled so that a completely randomised design is appropriate. The yields are as follows.

Fertiliser A	Fertiliser B	Fertiliser C	Fertiliser D	Fertiliser E
23.6	26.0	18.8	29.0	17.7
18.2	35.3	16.7	37.2	16.5
32.4	30.5	23.0	32.6	12.8
20.8	31.4	28.3	31.4	20.4

[The sum of these data items is 502.6 and the sum of their squares is 13 610.22.]

- (iv) Construct the usual one-way analysis of variance table. Carry out the appropriate test, using a 5% significance level. Report briefly on your conclusions. [12]
- (v) State the assumptions about the distribution of the experimental error that underlie your analysis in part (iv). [3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2007 4769/01 Jun07

Mark Scheme 4769 June 2007

1) $f(x) = \frac{1}{\theta} 0 \le x \le \theta$ $E[X] = \frac{\theta}{2}$ $E[2\overline{X}] = 2E[\overline{X}] = 2E[X]$ $= \theta$ $\therefore \text{ unbiased}$ (ii) $\sum x = 2.3 \therefore \overline{x} = \frac{2.3}{5} = 0.46 \therefore 2\overline{x} = 0.92$ But we know $\theta \ge 1$ $\therefore \text{ essentially useless}$ (iii) $Y = \max\{X_i\}, g(y) = \frac{my^{n-1}}{\theta^n} 0 \le y \le \theta$ $MSE(XY) = E[(XY - \theta)^2] = K^2 E[Y^2] - 2\lambda\theta E[Y] + \theta^2$ $\frac{dMSE}{dk} = 2kE[Y^2] - 2\lambda\theta E[Y] = 0$ $for k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum}$ $E[Y] = \int_0^{\theta} \frac{my^{n-1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+2} = \frac{n\theta}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ (iv) With this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in part (ii)	1)				
(ii) $ E[X] = \frac{\theta}{2} $ $ E[2\overline{X}] = 2E[\overline{X}] = 2E[X] $ $ = \theta $ $ \therefore \text{ unbiased} $ $ (iii) $ $ \sum x = 2.3 \qquad \therefore \overline{x} = \frac{2.3}{5} = 0.46 \qquad \therefore 2\overline{x} = 0.92 $ $ E1 $ $ \therefore \text{ estimator can give nonsense answers, i.e. essentially useless} $ $ E2 $ $ (E1, E1) $ $ (E1, E1) $ $ (E1, E1) $ $ (E1, E2) $ $ (E1, E1) $ $ (E1, E2) $ $ (E1, E3) $ $ (E1, E4) $ $ (E1, E4) $ $ (E2, E3) $ $ (E3, E4) $ $ (E3, E4) $ $ (E3, E4) $ $ (E4) $ $ (E3, E4) $ $ (E4) $ $ (E4) $ $ (E4) $ $ (E6) $ $ (E6) $ $ (E7) $ $ (E8) $ $ (E8$	1)	$f(x) = \frac{1}{\theta} \qquad 0 \le x \le \theta$			
(ii) $\sum x = 2.3 \therefore \overline{x} = \frac{2.3}{5} = 0.46 \therefore 2\overline{x} = 0.92$ But we know $\theta \ge 1$ $\therefore \text{ estimator can give nonsense answers, i.e. essentially useless}$ E1 $\sum (E1, E1)$ $\sum x = 2.3 \therefore \overline{x} = \frac{2.3}{5} = 0.46 \therefore 2\overline{x} = 0.92$ B1 But we know $\theta \ge 1$ $\sum (E1, E1)$ $\sum (E1, E1)$ $\sum (E1, E2)$ (iii) $Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} 0 \le y \le \theta$ MSE $(kY) = E[(kY - \theta)^2] = M1$ $E[k^2Y^2 - 2k\theta Y + \theta^2] = M1$ $E[k^2Y^2 - 2k\theta E[Y] + \theta^2 \qquad 1$ $\frac{dMSE}{dk} = 2kE[Y^2] - 2\theta E[Y] = 0$ for $k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum}$ M1 $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ M1 A1 (iv) With this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in E2 (E1 E1)			B1		
(ii) $\sum x = 2.3 \therefore \overline{x} = \frac{2.3}{5} = 0.46 \therefore 2\overline{x} = 0.92$ But we know $\theta \ge 1$ $\therefore \text{ estimator can give nonsense answers, i.e. essentially useless}$ E1 $\sum (E1, E1)$ $\sum x = 2.3 \therefore \overline{x} = \frac{2.3}{5} = 0.46 \therefore 2\overline{x} = 0.92$ B1 But we know $\theta \ge 1$ $\sum (E1, E1)$ $\sum (E1, E1)$ $\sum (E1, E2)$ (iii) $Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} 0 \le y \le \theta$ MSE $(kY) = E[(kY - \theta)^2] = M1$ $E[k^2Y^2 - 2k\theta Y + \theta^2] = M1$ $E[k^2Y^2 - 2k\theta E[Y] + \theta^2 \qquad 1$ $\frac{dMSE}{dk} = 2kE[Y^2] - 2\theta E[Y] = 0$ for $k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum}$ M1 $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ M1 A1 (iv) With this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in E2 (E1 E1)		\mathcal{L}	M1		
(ii) $\sum x = 2.3 \therefore \ \bar{x} = \frac{2.3}{5} = 0.46 \therefore 2 \bar{x} = 0.92$ But we know $\theta \ge 1$ $\therefore \text{ estimator can give nonsense answers.}$ i.e. essentially useless $(iii) Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} \qquad 0 \le y \le \theta$ $MSE(kY) = E[(kY - \theta)^2] = \\ E[k^2Y^2 - 2k\theta Y + \theta^2] = \\ k^2E[Y^2] - 2k\theta E[Y] + \theta^2 \qquad 1$ $\frac{dMSE}{dk} = \\ 2kE[Y^2] - 2\theta E[Y] = 0$ $for \ k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum}$ $E[Y] = \int_0^{\theta} \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^{\theta} \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ (iv) With this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in $E[Y] = \frac{1}{\theta} (E1 E1)$					
(iii) $\sum x = 2.3 \qquad \therefore \overline{x} = \frac{2.3}{5} = 0.46 \qquad \therefore 2\overline{x} = 0.92$ But we know $\theta \ge 1$ $\therefore \text{ estimator can give nonsense answers, i.e. essentially useless}$ (iii) $Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} \qquad 0 \le y \le \theta$ $MSE (kY) = E[(kY - \theta)^2] = \\ E[k^2Y^2 - 2k\theta Y + \theta^2] = \\ k^2E[Y^2] - 2k\theta E[Y] + \theta^2$ $\frac{dMSE}{dk} = \\ 2kE[Y^2] - 2\theta E[Y] = 0$ for $k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum}$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{my^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n} \frac{n+2}{n+2} \frac{n+2}{n+1}$ M1 A1 (iv) With this k , k is always greater than the sample maximum So it does not suffer from the disadvantage in E1 (iv) E1 (iv) (E1, E1)		S Control of the cont			4
But we know $\theta \ge 1$ \therefore estimator can give nonsense answers, i.e. essentially useless $Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} 0 \le y \le \theta$ MSE $(kY) = E[(kY - \theta)^2] = M1$ $E[k^2Y^2 - 2k\theta Y + \theta^2] = k^2 E[Y^2] - 2k\theta E[Y] + \theta^2$ $\frac{dMSE}{dk} = 2k E[Y^2] - 2\theta E[Y] = 0$ for $k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0$ \therefore this is a minimum $M1$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ \therefore minimising $k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n\theta^2}{n+2}$ with this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in $E[Y] = 0$ We have know $\theta \ge 1$ E[1] E[2] (E1, E1) 4					
$\begin{array}{c} \vdots \text{ estimator can give nonsense answers,} \\ \text{ i.e. estimator can give nonsense answers,} \\ \text{ i.e. essentially useless} \end{array} \qquad \begin{array}{c} E2 \end{array} \qquad \text{(E1, E1)} \\ \end{array} \qquad \begin{array}{c} \vdots \text{ estimator can give nonsense answers,} \\ \text{ i.e. essentially useless} \end{array} \qquad \begin{array}{c} \vdots \text{ estimator can give nonsense answers,} \\ \text{ i.e. essentially useless} \end{array} \qquad \begin{array}{c} \vdots \\ Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} & 0 \leq y \leq \theta \\ \text{MSE } (kY) = E[(kY - \theta)^2] = \\ k^2 E[(Y^2 - 2k\theta Y + \theta^2)] = \\ k^2 E[Y^2] - 2k\theta E[Y] + \theta^2 \end{array} \qquad \begin{array}{c} \vdots \\ \text{M1} \\ \text{M1} \\ \text{M2} \end{array} \qquad \begin{array}{c} \frac{dMSE}{dk} = \\ 2kE[Y^2] - 2\theta E[Y] = 0 \\ \text{for } k = \frac{\theta E[Y]}{E[Y^2]} \end{array} \qquad \begin{array}{c} M1 \\ \text{A1} \\ E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1} \\ E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2} \\ n+2 \end{array} \qquad \begin{array}{c} M1 \\ \text{A1} \\ \vdots \\ \text{minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \\ \end{array} \qquad \begin{array}{c} M1 \\ \text{A1} \end{array} \qquad \begin{array}{c} 12 \end{array} \qquad \begin{array}{c} 12 \end{array}$	(11)	$\sum x = 2.3$ $\therefore \bar{x} = \frac{2.3}{5} = 0.46$ $\therefore 2\bar{x} = 0.92$	B1		
$\begin{array}{c} \therefore \text{ estimator can give nonsense answers,} \\ \text{i.e. essentially useless} \\ \end{array} \begin{array}{c} E2 \\ \text{(E1, E1)} \\ \end{array} \begin{array}{c} (\text{iii}) \\ Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} 0 \leq y \leq \theta \\ \\ \text{MSE } (kY) = E[(kY - \theta)^2] = \\ E[k^2Y^2 - 2k\theta Y + \theta^2] = \\ k^2E[Y^2] - 2k\theta E[Y] + \theta^2 \\ \end{array} \begin{array}{c} 1 \\ \text{M1} \\ \text{EI} \\ \end{array} \begin{array}{c} \frac{d\text{MSE}}{dk} = \\ 2kE[Y^2] - 2\theta E[Y] = 0 \\ \text{for } k = \frac{\theta E[Y]}{E[Y^2]} \\ \end{array} \begin{array}{c} \frac{d^2\text{MSE}}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum} \\ E[Y] = \int\limits_0^\theta \frac{ny^n}{\theta^n} \mathrm{dy} = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1} \\ E[Y^2] = \int\limits_0^\theta \frac{ny^{n+1}}{\theta^n} \mathrm{dy} = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2} \\ \therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \\ \end{array} \begin{array}{c} \text{M1} \\ \text{A1} \\ \end{array} \begin{array}{c} 12 \\ \end{array} \end{array}$		But we know $\theta \ge 1$	E1		
i.e. essentially useless $Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} 0 \le y \le \theta$ $MSE(kY) = E[(kY - \theta)^2] = M1$ $E[k^2Y^2 - 2k\theta Y + \theta^2] = k^2 E[Y^2] - 2k\theta E[Y] + \theta^2$ $\frac{dMSE}{dk} = 2kE[Y^2] - 2\theta E[Y] = 0$ $for k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum}$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ $\text{(iv)} \text{With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in E2 (E1 E1)			E2	(E1, E1)	
(iii) $Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} \qquad 0 \le y \le \theta$ $\text{MSE } (kY) = \text{E}[(kY - \theta)^2] = \\ \text{E}[k^2Y^2 - 2k\theta Y + \theta^2] = \\ k^2\text{E}[Y^2] - 2k\theta \text{E}[Y] + \theta^2$ $\frac{d\text{MSE}}{dk} = \\ 2k\text{E}[Y^2] - 2\theta \text{E}[Y] = 0$ $\text{for } k = \frac{\theta \text{E}[Y]}{\text{E}[Y^2]}$ $\frac{d^2\text{MSE}}{dk^2} = 2\text{E}[Y^2] > 0 \therefore \text{ this is a minimum}$ M1 $\text{E}[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $\text{E}[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\text{Iminimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ M1 M1 M2 M3 M4 M1 M1 M2 M2 M3 M1 M3 M1 M2 M3 M3 M1 M3 M1 M2 M3 M3 M1 M3 M1 M2 M3 M3 M4 M3 M1 M2 M3 M3 M3 M4 M3 M4 M5 M6 M7 M1 M1 M2 M2 M3 M3 M3 M4 M3 M1 M2 M3 M3 M3 M4 M1 M2 M3 M3 M3 M4 M3 M3 M4 M5 M6 M1 M1 M2 M2 M3 M3 M3 M3 M4 M1 M2 M3 M3 M3 M4 M1 M2 M3 M3 M4 M1 M2 M3 M3 M4 M1 M2 M3 M3 M4 M3 M3 M4 M5 M6 M1 M1 M2 M3 M3 M3 M4 M2 M3 M3 M4 M3 M4 M5 M6 M1 M1 M2 M3 M3 M4 M3 M4 M5 M6 M1 M2 M3 M3 M4 M4 M5 M6 M8 M8 M1 M2 M3 M3 M4 M5 M6 M1 M8 M1 M2 M3 M3 M4 M5 M5 M6 M1 M1 M2 M3 M3 M4 M5 M5 M6 M8 M8 M9 M9 M1 M1 M2 M3 M3 M4 M5 M8 M8 M9 M9 M9 M9 M1 M1 M2 M3 M3 M4 M9 M9					4
$E[k^2Y^2 - 2k\theta Y + \theta^2] = k^2 E[Y^2] - 2k\theta E[Y] + \theta^2$ $\frac{dMSE}{dk} = M1$ $2kE[Y^2] - 2\theta E[Y] = 0$ $for k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum}$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ $\text{(iv)} \text{With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in E2 (E1 E1)	(iii)				
$E[k^2Y^2 - 2k\theta Y + \theta^2] = k^2 E[Y^2] - 2k\theta E[Y] + \theta^2$ $\frac{dMSE}{dk} = M1$ $2kE[Y^2] - 2\theta E[Y] = 0$ $for k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum}$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ $\text{(iv)} \text{With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in E2 (E1 E1)		$MSE(kY) = E[(kY - \theta)^{2}] =$	M1		
$\frac{d\text{MSE}}{dk} = \frac{d\text{MSE}}{2k\text{E}[Y^2] - 2\theta \text{E}[Y] = 0} \qquad \text{M1}$ $\text{for } k = \frac{\theta \text{E}[Y]}{\text{E}[Y^2]} \qquad \text{A1}$ $\frac{d^2\text{MSE}}{dk^2} = 2\text{E}[Y^2] > 0 \therefore \text{ this is a minimum} \qquad \text{M1}$ $\text{E}[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1} \qquad \text{A1}$ $\text{E}[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2} \qquad \text{A1}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \qquad \text{A1}$ $\text{(iv)} \text{With this } k, kY \text{ is always greater than the sample maximum} \text{So it does not suffer from the disadvantage in} \text{E2} \text{(E1 E1)}$					
$\frac{d\text{MSE}}{dk} = \frac{d\text{MSE}}{2k\text{E}[Y^2] - 2\theta \text{E}[Y] = 0} \qquad \text{M1}$ $for k = \frac{\theta \text{E}[Y]}{\text{E}[Y^2]} \qquad \text{A1}$ $\frac{d^2\text{MSE}}{dk^2} = 2\text{E}[Y^2] > 0 \therefore \text{ this is a minimum} \qquad \text{M1}$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1} \qquad \text{A1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2} \qquad \text{A1}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \qquad \text{A1}$ $\text{(iv)} \text{With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in E2 (E1 E1)		k^2 E[Y^2] – $2k\theta$ E[Y] + θ^2	1	BEWARE PRINTED ANSWER	
$\frac{dk}{dk} = 2kE[Y^2] - 2\theta E[Y] = 0$ for $k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum} \qquad M1$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ $\text{(iv)} \text{With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in E2 (E1 E1)			M1		
$2kE[Y^2] - 2\theta E[Y] = 0$ for $k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum} \qquad M1$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$ $\text{(iv)} \qquad \text{With this } k, kY \text{ is always greater than the sample maximum} So it does not suffer from the disadvantage in}$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ $\frac{n\theta^2}{n+1} = \frac{n\theta^2}{n+1}$ $\frac{n\theta^2}{n+2} = \frac{n+2}{n+1}$ $\frac{n\theta^2}{n+1} = \frac{n\theta^2}{n+2}$ $\frac{n\theta^2}{n+1} = \frac{n\theta^2}{n+2}$ $\frac{n\theta^2}{n+2} $			1711		
for $k = \frac{\theta \mathrm{E}[Y]}{\mathrm{E}[Y^2]}$ $\frac{d^2 \mathrm{MSE}}{dk^2} = 2\mathrm{E}[Y^2] > 0 \therefore \text{ this is a minimum} \qquad \mathrm{M1}$ $\mathrm{E}[Y] = \int_0^\theta \frac{ny^n}{\theta^n} \mathrm{d}y = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1} \qquad \mathrm{M1}$ $\mathrm{E}[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} \mathrm{d}y = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2} \qquad \mathrm{M1}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \qquad \mathrm{M1}$ $\mathrm{A1}$ $(iv) \text{With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in E2 (E1 E1)		•	3.61		
for $k = \frac{S - 2[Y]}{E[Y^2]}$ $\frac{d^2 MSE}{dk^2} = 2E[Y^2] > 0 \therefore \text{ this is a minimum} \qquad M1$ $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1} \qquad M1$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2} \qquad M1$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \qquad M1$ $\text{(iv)} \text{With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in E2 (E1 E1)		$2kE[Y^2] - 2\theta E[Y] = 0$	MI		
$\frac{d^2 \text{MSE}}{dk^2} = 2\text{E}[Y^2] > 0 \therefore \text{ this is a minimum} \qquad \text{M1}$ $\text{E}[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1} \qquad \text{M1}$ $\text{E}[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2} \qquad \text{M1}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \qquad \text{M1}$ $\text{(iv)} \text{With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in E2 (E1 E1)		$\epsilon_{con, I_r} = \theta E[Y]$	A 1		
$E[Y] = \int_{0}^{\theta} \frac{ny^{n}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^{2}] = \int_{0}^{\theta} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^{2}} = \frac{n+2}{n+1}$ $\text{(iv) With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in $E[Y] = \int_{0}^{\theta} \frac{ny^{n}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+1}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\frac{M1}{A1}$ $\frac{12}{12}$		~[·]			
$E[Y] = \int_{0}^{\theta} \frac{ny^{n}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^{2}] = \int_{0}^{\theta} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^{2}} = \frac{n+2}{n+1}$ $\text{(iv) With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in $E[Y] = \int_{0}^{\theta} \frac{ny^{n}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+1}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\frac{M1}{A1}$ $\frac{12}{12}$		$\frac{d^2 \text{MSE}}{dt} = 2 \text{E}[V^2] > 0 \text{this is a minimum}$	N/1		
$E[Y] = \int_{0}^{\infty} \frac{ny}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta}{n+1} = \frac{n\theta}{n+1}$ $E[Y^{2}] = \int_{0}^{\theta} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^{2}} = \frac{n+2}{n+1}$ $\text{(iv) With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in $E[Y] = \int_{0}^{\pi} \frac{ny}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta}{n+1} = \frac{n\theta^{2}}{n+2}$ $\frac{M1}{A1}$ $E[Y] = \int_{0}^{\theta} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\frac{M1}{A1}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\frac{n}{A1} = \frac{1}{A1}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\frac{n}{A1} = \frac{1}{A1}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n\theta^{2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $E[Y] = \int_{0}^{\pi} ny$		dk^2 — 2.2.[1] > 0 uns is a minimum	IVII		
$E[Y^{2}] = \int_{0}^{\theta} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^{2}} = \frac{n+2}{n+1}$ $\text{(iv) With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in $E2 \text{(E1 E1)}$		$ \theta$ nv^n $n \theta^{n+1}$ $n\theta$			
$E[Y^{2}] = \int_{0}^{\theta} \frac{ny^{n+1}}{\theta^{n}} dy = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^{2}}{n+2}$ $\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^{2}} = \frac{n+2}{n+1}$ $\text{(iv) With this } k, kY \text{ is always greater than the sample maximum}$ So it does not suffer from the disadvantage in $E2 \text{(E1 E1)}$		$E[Y] = \int \frac{9}{\theta^n} dy = \frac{\pi}{\theta^n} \frac{1}{n+1} = \frac{\pi}{n+1}$	A 1		
$\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \qquad \text{M1} $ (iv) With this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in $E2 \qquad \text{(E1 E1)}$		0	3.51		
$\therefore \text{ minimising } k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1} \qquad \text{M1} $ (iv) With this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in $E2 \qquad \text{(E1 E1)}$		$E[Y^2] = \int_{0}^{\theta} \frac{ny^{n+1}}{n^n} dy = \frac{n}{n^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$			
(iv) With this k, kY is always greater than the sample maximum So it does not suffer from the disadvantage in E2 (E1 E1) E2 (E1 E1) 4					
(iv) With this k, kY is always greater than the sample maximum So it does not suffer from the disadvantage in E2 (E1 E1) E2 (E1 E1) 4		: minimising $k = \theta \frac{n\theta}{n} \frac{n+2}{n+2} = \frac{n+2}{n+2}$			
(iv) With this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in E2 (E1 E1) 4		$n+1 n\theta^2 \qquad n+1$	Al		12
maximum So it does not suffer from the disadvantage in E2 (E1 E1) 4	(iv)	With this k , kY is always greater than the sample	E2	(E1 E1)	14
So it does not suffer from the disadvantage in E2 (E1 E1) 4		, ,		()	
			E2	(E1 E1)	4

2(i)	$G(t) = E[t^{X}] = \sum_{x=0}^{n} {n \choose x} (pt)^{x} (1-p)^{n-x}$	M1		
	$= [(1-p)+pt]^n$	2	Available as B2 for write-down or as 1+1 for algebra	
	$=(q+pt)^n$	1		4
(ii)	$\mu = G'(1)$ $G'(t) = np(q + pt)^{n-1}$	1		
	$G'(1) = np \times 1 = np$	1		
	$\sigma^2 = G''(1) + \mu - \mu^2$	1		
	$G''(t) = n(n-1)p^{2}(q+pt)^{n-2}$			
	$G''(1) = n(n-1)p^2$	1		
	$\therefore \sigma^2 = n^2 p^2 - np^2 + np - n^2 p^2$	M1		
	$=-np^2+np=npq$	1		6
(iii)	$Z = \frac{X - \mu}{\sigma}$ Mean 0, Variance 1	B1	For <u>BOTH</u>	1
(iv)	$M(\theta) = G(e^{\theta}) = (q + pe^{\theta})^n$	1		
	Z = aX + b with:			
	$a = \frac{1}{\sigma} = \frac{1}{\sqrt{npq}}$ and $b = -\frac{\mu}{\sigma} = -\sqrt{\frac{np}{q}}$			
	$\mathbf{M}_{Z}(\theta) = e^{b\theta} \mathbf{M}_{X}(a\theta)$	M1		
	$\therefore \mathbf{M}_{Z}(\theta) = e^{-\sqrt{\frac{np}{q}}\theta} \left(q + pe^{\frac{1}{\sqrt{npq}}\theta} \right)^{n} =$	1 1		
	$\left(qe^{-\frac{p\theta}{\sqrt{npq}}} + pe^{\frac{1-p}{\sqrt{npq}}\theta}\right)^n$	1	BEWARE PRINTED ANSWER	5
(v)	$M_Z(\theta) = (q - \frac{qp\theta}{\sqrt{npq}} + \frac{qp^2\theta^2}{2npq} +$	M1	For expansion of exponential terms	
	terms in $n^{-3/2}$, n^{-2} ,	M1	For indication that these can be neglected as $n \to \infty$. Use of result given in question	
	$(1 + \frac{\theta^2}{2n} + \cdots)^n \rightarrow e^{\frac{\theta^2}{2}}$	1		
	e'-	1		4

(vi)	N(0,1)	1		
	Because $e^{\theta^2/2}$ is the mgf of N(0,1)	E1		
	and the relationship between distributions and their mgfs is unique	E1		3
(vii)	"Unstandardising", $N(\mu, \sigma^2)$ ie $N(np, npq)$	1	Parameters need to be given.	1

- (1)		1	T	1
3(i)	$H_0: \mu_A = \mu_B$	1		
	$H_1: \mu_A \neq \mu_B$	1	Do NOT allow $\overline{X} = \overline{Y}$ or similar	
	Where μ_A , μ_B are the population means	1	Accept absence of "population" if correct notation μ is used. Hypotheses stated verbally <u>must</u> include the word "population".	
	Test statistic 26.4 – 25.38	M1	Numerator	
	$\frac{1}{\sqrt{\frac{2.45}{77} + \frac{1.40}{5}}} =$	3.41	5	
	V 7 ' 5	M1 M1	Denominator two separate terms correct	
	$\frac{1.02}{\sqrt{0.63} = 0.7937} = 1.285$	A1		
	Refer to N(0,1)	1	No FT if wrong	
	Double-tailed 5% point is 1.96	1 1	No FT if wrong	
	Not significant No evidence that the population means differ	1		10
	1 1			
(ii)	CI (for $\mu_A - \mu_B$) is	M1		
	1.02 ± 1.645×	1411		
	0.7937 =	B1		
	$1.02 \pm 1.3056 =$	M1		
	(-0.2856, 2.3256)	A1	Zero out of 4 if not N(0,1)	4
(iii)	H: 110 100 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cao M1	SC1 Same wrong test can get	
(111)	H_0 is accepted if -1.96 < test statistic < 1.96	IVII	M1,M1,A0.	
	i.e. if $-1.96 < \frac{\overline{x} - \overline{y}}{0.7937} < 1.96$	M1	SC2 Use of 1.645 gets 2 out of 3.	
	i.e. if $-1.556 < \bar{x} - \bar{y} < 1.556$	A1	BEWARE PRINTED ANSWER	
	In fact, $\bar{X} - \bar{Y} \sim N(2,0.7937^2)$	M1	EZ WINE TRIVIED WINGWER	
	So we want			
	$P(-1.556 < N(2,0.7937^2) < 1.556) =$	M1		
	$P\left(\frac{-1.556-2}{0.7937} < N(0,1) < \frac{1.556-2}{0.7937}\right) =$	M1	Standardising	
	P(-4.48 < N(0,1) < -0.5594) = 0.2879	A1		
		cao		7
(iv)	Wilcoxon would give protection if assumption of Normality is wrong.	E1		
	Wilcoxon could not really be applied if	151		
	underlying variances are indeed	E1		
	different. Wilcoxon would be less powerful (worse Type			
	II error behaviour) with such small samples	E1		
	if Normality is correct.			3

4 (i)	There might be some consistent source of plot- to-plot variation that has inflated the residual and which the design has failed to cater for.	E2	E1 – Some reference to extra variation. E1 – Some indication of a reason.	2
(ii)	Variation between the fertilisers should be compared with experimental error.	E1	21 Some manufacture of wreadom	_
	If the residual is inflated so that it measures more than experimental error, the comparison of between - fertilisers variation			
	with it is less likely to reach significance.	E2	(E1, E1)	3
(iii)	Randomised blocks	1		
	C	E1	Blocks (strips) clearly correctly oriented w.r.t. fertiliser gradient.	
	A	E1	All fertilisers appear in a block.	
	SPECIAL CASE: Latin Square $\frac{2}{1}$ (1, E1)	E1	Different (random) arrangements in the blocks.	4
(iv)	Totals are: 95.0 123.2 86.8 130.2 67.4 (each from sample of size 4) Grand total 502.6 "Correction factor" $CF = \frac{502.6^2}{20} = 12630.338$ Total $SS = 13610.22 - CF = 979.882$			
	Between fertilisers SS =	M1		
	$\frac{95.0^2}{4} + \dots + \frac{67.4^2}{4} - \text{CF} = 13308.07 - \text{CF} = 677.732$	M1	For correct method for any two	
	Residual SS (by subtraction) = 979.882 – 677.732=302.15	A1	If each calculated SS is correct	
	Source of variation SS df MS MS Ratio	M1 M1		
	Between fertiliser Residual 677.732 302.15 4 169.433 20.143 8.41 20.143	<u>1</u> ,A1 <u>1</u>		
	Total 979.882 19 Refer to $F_{4, 15}$ -upper 5% point is 3.06 Significant	1 1 1	No FT if wrong No FT if wrong	10
(vii)	- seems effects of fertilisers are not all the same Independent N $(0, \sigma^2 \text{ [constant]})$	1 1		12
()		1		
		1		3

4769: Statistics 4

General Comments

This is the second time that the new-specification Statistics 4 module has been sat. Although the entry is small, it is pleasing that the opportunity to proceed to high levels in the applied mathematics strands is still available.

There was some extremely good work, and only a little very poor work.

The paper consists of four questions, each within a defined "option" area of the specification. The rubric requires that three be attempted. All four questions received many attempts – another encouraging feature, as it indicates that centres and candidates are spreading their work over all the options.

Sadly there were again cases of "faking" of answers that were given within the questions. This was discussed at some length in last year's report. This year, I will merely reiterate that it is *entirely unacceptable*.

Comments on Individual Questions

This was on the "estimation" option. It consisted of comparison of two estimators of θ for the uniform distribution on $(0, \theta)$.

The first of those estimators was $2\overline{X}$. Most candidates showed quickly enough that it was unbiased, but surprisingly many did not spot that, with the sample data given, its value was 0.92 even though we *knew* that θ must be at least 1, thus making it a fairly useless estimator! Candidates tended instead to struggle in making unconvincing comments about its variance. The question then moved on to a new estimator whose mean square error was to be found; this was usually done fairly successfully, some candidates being much more efficient in their work than others, and some not really being able to cope at all. Candidates who had spotted the key disadvantage of the first estimator were usually able to see that the new estimator could not possibly suffer from it, but others struggled to find anything sensible to say.

This was on the "generating functions" option. It led candidates through the steps of proving that the limiting distribution of the B(n, p) random variable as $n \to \infty$ is N(np, npq).

Most candidates proceeded thoroughly and carefully through the technical mathematical work, much of which should have been standard bookwork. However, surprisingly many could not simply write down 0 and 1 for the mean and variance in part (iii). In part (iv), several candidates were rescued, with greater or less legitimacy, by the provision in the question of the answer. In part (v), some candidates did not realise that the first step towards the limiting result was to expand the exponential terms from part (iv). Most, however, did this quite well, sometimes not being entirely convincing in their use of the result given in the question (simply averring that their version of the f(n) in that result was actually *equal to* zero rather missed the point).

This question was on the "inference" option. It was based on an unpaired Normal test, proceeding to consideration of Type II error.

Mostly the test and confidence interval (parts (i) and (ii)) were well done, though some of the usual errors did appear from time to time. Part (iii) met with mixed success; it was done very well by some candidates, whereas others fell by the wayside en route. Surprisingly many failed to consider both "tails" in finding the last probability; though one of them turns out to be negligible in the extreme, this cannot be known until there has been some investigation of it! A variety of suggestions in favour of and against the Wilcoxon alternative came forward in part (iv).

4 This was on the "design and analysis of experiments" option.

It opened with some important considerations of experimental design. Some candidates showed good appreciation of the points here; others did not. In part (iii), the required design was randomised blocks (correctly oriented with respect to the fertility gradient); some credit was allowed for suggestions of Latin squares, though that design is not really appropriate here as it is too complicated for the situation.

The analysis in the last part was usually done well. However, the point must *yet again* be made that many candidates were very inefficient in their calculations. This is definitely getting worse. What might be called the " s_b^2/s_w^2 " method is *extremely* cumbersome for hand calculation. It is intricate, takes a great deal of time, and is liable to produce errors. It is poor practice. The "squared totals" method (as exhibited, somewhat in summary form, in the published mark scheme) is *very* much better for hand calculation. It is appreciated that the " s_b^2/s_w^2 " method is that by which the analysis of variance is first approached in the MEI textbook that supports this module, but the book does go on to mention the "squared totals" method. Candidates should be sure to understand the "squared totals" method and to use it routinely when carrying out these calculations by hand.

Finally, it was encouraging that many candidates were able to state the assumptions about the distribution of the experimental error correctly.