

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

2604

Pure Mathematics 4

Monday

13 JANUARY 2003

Afternoon

1 hour 20 minutes

Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF12)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer any three questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 60.

- 1 A curve has equation $y = \frac{(2x+1)(x-11)}{(x+2)(x-5)}$.
 - (i) Write down the equations of the three asymptotes. [2]
 - (ii) Show that $\frac{dy}{dx} = \frac{3(5x^2 6x + 59)}{(x^2 3x 10)^2}$. Hence show that there are no stationary points. [5]
 - (iii) Sketch the curve. [4]
 - (iv) On a separate diagram, sketch the curve with equation $y = \left| \frac{(2x+1)(x-11)}{(x+2)(x-5)} \right|$. [3]
 - (v) Solve the inequality $\left| \frac{(2x+1)(x-11)}{(x+2)(x-5)} \right| < 2.$ [6]
- 2 (a) Find $\sum_{r=1}^{n} r(3r+2)$, giving your answer in a fully factorised form. [6]
 - **(b)** Show that $\frac{r+2}{r(r+1)} \frac{r+3}{(r+1)(r+2)} = \frac{r+4}{r(r+1)(r+2)}$.

Hence or otherwise find the sum of the first n terms of the series

$$\frac{5}{1 \times 2 \times 3} + \frac{6}{2 \times 3 \times 4} + \frac{7}{3 \times 4 \times 5} + \frac{8}{4 \times 5 \times 6} + \dots$$
 [6]

(c) Prove by induction that
$$\sum_{r=1}^{n} \frac{2^r (r^2 - 2)}{(r+1)^2 (r+2)^2} = \frac{2^{n+1}}{(n+2)^2} - \frac{1}{2}.$$
 [8]

3 (a) Two complex numbers are $\alpha = -2$ –2j, $\beta = \sqrt{2} (\cos \frac{3}{5}\pi + j \sin \frac{3}{5}\pi)$.

Find the modulus and argument of each of the following complex numbers, giving the arguments in radians between $-\pi$ and π :

$$\alpha$$
, β , $\alpha\beta$, $\frac{\alpha}{\beta}$.

Illustrate these four complex numbers on an Argand diagram.

[10]

(b) The complex numbers w and z satisfy the equations

$$\frac{w+j}{1+z} = 6-j$$
 and $\frac{(1+j)w+j}{1+j+z} = 3+4j$.

(i) Show that w = (6-j)z + 6-2jand (1+j)w = (3+4j)z - 1 + 6j. [3]

(ii) Hence find w and z. [7]

4 (a) (i) Find the equation of the line of intersection of the two planes

$$3x + 4y + 2z = 32$$

and $8x + 9y + 5z = 82$. [5]

(ii) Hence or otherwise solve the equation

$$\begin{pmatrix} 3 & 4 & 2 \\ 8 & 9 & 5 \\ k & 5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 32 \\ 82 \\ 14 \end{pmatrix},$$

where $k \neq 0$, giving x, y and z in terms of k.

[6]

(b) The matrix $\begin{pmatrix} -2 & 5 \\ -1 & 4 \end{pmatrix}$ defines a transformation in the x-y plane.

(i) Find the two values of m for which y = mx is an invariant line of the transformation.

[6]

(ii) Find the set of invariant points of the transformation.

[3]

Mark Scheme

1 (1)	1 2 5	In.	
1 (i)	x = -2, x = 5	B1 B1	2
	y = 2	ы	
(ii)	<u>dy</u>		
	dx		
i	$(x^2 - 3x - 10)(4x - 21) - (2x^2 - 21x - 11)(2x - 3)$	M1	Use of quotient rule (or equivalent)
	$=\frac{(x^2-3x-10)(4x-21)-(2x^2-21x-11)(2x-3)}{(x^2-3x-10)^2}$	A1	Any correct form
İ	,		
	$=\frac{3(5x^2-6x+59)}{(x^2-3x-10)^2}$	11 (00)	
	$=\frac{1}{(x^2-3x-10)^2}$	A1 (ag)	
İ	, ,	M1	Or equivalent
	Discriminant is $6^2 - 4 \times 5 \times 59 = -1144 < 0$,	1	Correctly shown
(iii)	So there are no stationary points.		Correctly discount
(111)			
	1 /: 1 /:	В1	I U section: positive gradient above
		l Bi	LH section: positive gradient, above x-axis
	2 /	1	X-4X13
ļ		В1	Middle section: positive gradient,
İ			crossing axes at $x = -0.5$ and $y = 1.1$
		.	crossing axes at $x = -0.5$ and $y = 1.1$
	-2 /1 51 /11 x	B1	RH section: positive gradient, crossing
		BI	x-axis at $x = 11$
	'/ :/	1	x-axis at $x = 11$
	1 9 1 7	B1 :	Fully correct shape and approaching
1	1 7 1 7		asymptotes correctly
(iv)	/i 91 /i		
()]	1
		B2 ft	Negative sections reflected
			Give B1 if curve has just one negative
		1	section, or if one minor error made
		B1 ft	Two sharp points on x-axis
	- Y - X -	3	(No need for any numbers on axes)
	-2 5 II x		
(v)	(2x+1)(x-11)	M1A1	15 10 th D2 f 0 6 (4 + 9)
	$\frac{(2x+1)(x-11)}{(x+2)(x-5)} = 2 \text{ when } x = 0.6$	MIAI	If M0 then B2 for 0.6 (Accept $\frac{9}{15}$)
	$\frac{(2x+1)(x-11)}{(x+2)(x-5)} = -2 \text{ when } 4x^2 - 27x - 31 = 0$	M1	If M0 then B1 for -1, 7.75
	(x + 2)(x - 5)	ļ	
	$(2x+1)^2(x-11)^2$		
	OR $\frac{(2x+1)^2(x-11)^2}{(x+2)^2(x-5)^2} < 4$ M1		
	(** -) (** -)		Cubia in a sublific
	$60x^3 - 441x^2 - 222x + 279 > 0 M1$	}	Cubic inequality
	Critical values 0.6 [-1, 7.75] A1	1	For 0.6
	Considering intervals defined by critical values	M1	x = -1, 0.6, 7.75 (ft)
İ	(2x+1)(x-11)	1	
	OR $-2 < \frac{(2x+1)(x-11)}{(x+2)(x-5)} < 2$ M1		
			Made d Council 1 at 1 at 1 at 1
	M1		Method for solving both inequalities
	A1		For 0.6
	x < -2, -1 < x < 5, x > 7.75		Combining the solutions
	AND $-2 < x < 0.6, x > 5$ M1		Combining the solutions
	(2x+1)(x-11)	12	Correct annual abuses asses 6 marks
	$\left \frac{(2x+1)(x-11)}{(x+2)(x-5)} \right < 2 \text{ when } -1 < x < 0.6, x > 7.75$	A2 cao	Correct answer always earns 6 marks
	1 (2 + 2)(2 = 3)	6	

(2.4.)			γ	·
2 (a)	$\sum_{r=1}^{n} (3r^2 + 2r)$		B1	
	$= \frac{1}{2}n(n+1)(2n+1) + n(n+1)$		M1A1A1 ft	Ft only for $\sum r^2$ and $\sum r$
	$= \frac{1}{2}n(n+1)(2n+1+2)$		M1	Common factor $n(n+1)$
	$= \frac{1}{2}n(n+1)(2n+3)$		A1 cao	Accept $n(n+1)(n+\frac{3}{2})$ etc
(b)	LHS = $\frac{(r+2)(r+2) - r(r+3)}{r(r+1)(r+2)}$		M1	
	$=\frac{(r^2+4r+4)-(r^2+3r)}{r(r+1)(r+2)}$			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Al (ag)	
	$=\frac{r+4}{r(r+1)(r+2)}$			
	Sum is $\sum_{r=1}^{n} \left(\frac{r+2}{r(r+1)} - \frac{r+3}{(r+1)(r+2)} \right)$		М1	Using given result
	$= \left(\frac{3}{2} - \frac{4}{6}\right) + \left(\frac{4}{6} - \frac{5}{12}\right) + \left(\frac{5}{12} - \frac{6}{20}\right) + \dots$		A1	Two correct terms
	$= \frac{3}{2} - \frac{n+3}{(n+1)(n+2)} \left[= \frac{n(3n+7)}{2(n+1)(n+2)} \right]$		M1 A1 6	One fraction at start, one at end
	OR Sum is $\sum_{r=1}^{n} \left(\frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2} \right)$	M1		Using partial fractions
	$= \left(\frac{2}{1} - \frac{3}{2} + \frac{1}{3}\right) + \left(\frac{2}{2} - \frac{3}{3} + \frac{1}{4}\right) + \dots$	A1		Two correct terms
	$= \frac{2}{1} - \frac{3}{2} + \frac{2}{2} + \frac{1}{n+1} - \frac{3}{n+1} + \frac{1}{n+2}$	М1		Three fractions at start, three at end
	$= \frac{3}{2} - \frac{2}{n+1} + \frac{1}{n+2}$	A1		
(c)	When $n = 1$, LHS = $\frac{2(1-2)}{2^2 \times 3^2} = -\frac{1}{18}$			
	$RHS = \frac{2^2}{3^2} - \frac{1}{2} = -\frac{1}{18}$		B1	
	so it is true when $n=1$			
	Assume true for $n = k$, then $k+1 = 2^{k+1} + 1 = 2^{k+1} / (k+1)^2 = 2^k$			
	$\sum_{k=1}^{k+1} = \frac{2^{k+1}}{(k+2)^2} - \frac{1}{2} + \frac{2^{k+1} \{ (k+1)^2 - 2 \}}{(k+2)^2 (k+3)^2}$		M1A1	
	$= \frac{2^{k+1} \left(k^2 + 6k + 9 + k^2 + 2k - 1\right)}{\left(k+2\right)^2 \left(k+3\right)^2} - \frac{1}{2}$		M1	Use of common denominator
			M1	Numerator as $2^{k+1} \times \text{simple quadratic}$
	$=\frac{2^{k+1}2(k+2)^2}{(k+2)^2(k+3)^2}-\frac{1}{2}$		М1	Use of $2^{k+1} \times 2 = 2^{k+2}$
	$=\frac{2^{k+2}}{(k+3)^2}-\frac{1}{2}$		A1	Correctly obtained
	$(k+3)^2 2$ True for $n = k \Rightarrow$ True for $n = k+1$		A1	Stated or clearly implied
	(Hence true for all positive integers n)			Dependent on previous 6 marks
	(treated and posture integers in)		l	

3 (a)	$ \alpha = \sqrt{8}$, $\arg \alpha = -\frac{3}{4}\pi$	B1B1	Accept decimals to at least 2 dp
	$ \beta = \sqrt{2}$, $\arg \beta = \frac{3}{5}\pi$	В1	Penalise wrong form of arguments and/or insufficient accuracy once only
	$\left \alpha \beta \right = 4$, $\arg(\alpha \beta) = -\frac{3}{20}\pi$	B1B1 ft	
	$\left \frac{\alpha}{\beta} \right = 2$, $\arg \left(\frac{\alpha}{\beta} \right) = \frac{13}{20} \pi$	B1B1 ft	
		B1	α in 3rd quadrant, β in 2nd quadrant $\alpha\beta$ in 4th quadrant
	Δβ.	B1 10	$\frac{\alpha}{\beta}$ in 2nd quadrant
	, a		
(b)(i)	$\frac{w+j}{1+z} = 6-j \implies w+j = 6-j+(6-j)z$ $\implies w = (6-j)z+6-2j$	B1 (ag)	
	$\frac{(1+j)w+j}{1+j+z} = 3+4j$	DI (ag)	
	$\Rightarrow (1+j)w+j=(3+4j)(1+j)+(3+4j)z$	M1	
	$\Rightarrow (1+j)w + j = 3+7j-4+(3+4j)z$	M1	Multiplication using $j^2 = -1$
	$\Rightarrow (1+j)w = (3+4j)z - 1 + 6j$	A1 (ag) 3	l
(ii)	(1+j)(6-j)z+(1+j)(6-2j)=(3+4j)z-1+6j	M1	Eliminating w or z
	(7+5j)z + 8+4j = (3+4j)z - 1+6j $(4+j)z = -9+2j$	N1	
	$z = \frac{-9+2j}{4+j} = \frac{(-9+2j)(4-j)}{(4+j)(4-j)}$	M1 M1	Use of complex conjugate
	$= \frac{4+j}{4+j} \frac{(4+j)(4-j)}{17}$		Con or complete conjugate
	$ \begin{array}{l} 17 \\ = -2 + j \end{array} $	A1	
	w = (6 - j)(-2 + j) + 6 - 2j	M1	Substitution
		M1	Necessary manipulation
	=-5+6j	A1 7	
	OR Let $w = a + bj$, $z = c + dj$		
	a = 6c + d + 6, $b = -c + 6d - 2$		
	a-b=3c-4d-1, $a+b=4c+3d+6$ M1	i	Four equations
	Solving, $a = -5$, $b = 6$ M2	1 1	Obtaining two of a, b, c, d
	w = -5 + 6j A1		Obtaining the other two
	c = -2, d = 1 M2 z = -2 + j A1	i I	Cotaming the other two
	2- 2+j Al		

			• ,
4(a)(i)	When $x = 0$, $4y + 2z = 32$, $9y + 5z = 82$	M1	Finding one point
	y = -2, z = 20	A1	One point correct
	Direction is given by $\begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \times \begin{pmatrix} 8 \\ 9 \\ 5 \end{pmatrix}$	MI	Or finding a second point, e.g. (4,0,10), (8,2,0) and using it to find direction
	Direction is $\begin{pmatrix} 2 \\ 1 \\ -5 \end{pmatrix}$	A1 cao	it to find direction
	Equation of line is $\mathbf{r} = \begin{pmatrix} 0 \\ -2 \\ 20 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -5 \end{pmatrix}$	A1 ft	Dependent on MIMI. Accept any form A0 if 'r = ' omitted
	OR Eliminating z, $x - 2y = 4$ M1A1 M1A1 $x = 2\lambda$, $y = -2 + \lambda$, $z = 20 - 5\lambda$ A1 ft		Eliminating one variable Expressing (e.g.) y and z in terms of x
(ii)	Substituting into $kx + 5y + z = 14$,	M1	Or eliminating one variable in 2 ways
i	$k(2\lambda) + 5(-2 + \lambda) + (20 - 5\lambda) = 14$	A1 ft	Or 2 correct equations (in 2 variables)
	$\lambda = \frac{2}{k}$	M1 A1 cao	Obtaining λ or one of x , y , z Or one variable correct
	$x = \frac{4}{k}$, $y = -2 + \frac{2}{k}$, $z = 20 - \frac{10}{k}$	M1 A1 cao	Obtaining at least two of x , y , z
(b)(i)	$\begin{pmatrix} -2 & 5 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix}$	M1	
	$= \begin{pmatrix} -2x + 5mx \\ -x + 4mx \end{pmatrix}$	A1	
	y = mx is invariant if		
	-x + 4mx = m(-2x + 5mx)	M1A1	
	$5m^2 - 6m + 1 = 0$	M1	Quadratic in m
	$m=1$, $\frac{1}{5}$	A1 cao	
(ii)	For invariant points, $\begin{pmatrix} -2 & 5 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$		
	-2x + 5y = x $-x + 4y = y$	M1	
	x=0, $y=0$ only	A2 3	

Examiner's Report

2604 Pure Mathematics 4

General Comments

This paper was found to be slightly more accessible than most of the previous ones. There was a wide range of ability, with about one third of candidates scoring 50 marks or more (out of 60), and about 20% scoring less than 30 marks. Many candidates used time consuming inefficient methods (notably in questions 1(v), 2(b), 3(b) and 4(a)(ii)) and then found themselves unable to complete the paper. Question 1 was attempted by almost every candidate, and question 4 was the least popular (attempted by about half the candidates).

Comments on Individual Questions

Question 1 (Curve sketching)

This was well answered, with half the attempts scoring 15 marks or more (out of 20), and about 20% scoring full marks. In part (i) the three asymptotes were almost always given correctly. In part (ii) the differentiation was usually done correctly and most candidates demonstrated that the quadratic equation had no real roots, although some simply stated that this was the case without any justification. In part (iii) the curve was sketched well; the main reasons for loss of marks were omitting the left-hand section or not giving the values where the curve crosses the axes. Sketching the modulus graph in part (iv) was very well understood. The inequality in part (v) was often quickly and accurately solved by finding the critical values and inspection of the graph. However, very many candidates attempted an algebraic solution without reference to the graph; this was usually a lengthy process and was rarely completed successfully. In particular, the 'squaring' method $|y| < 2 \Leftrightarrow y^2 < 4$ was often started but hardly ever proceeded as far as factorising the resulting cubic inequality.

(i)
$$x = -2$$
, $x = 5$, $y = 2$; (v) $-1 < x < 0.6$, $x > 7.75$.

Question 2 (Series)

This was the best answered question, with half the attempts scoring 17 marks or more, and about a third scoring full marks. In part (a) the use of the standard sums was well understood, but it was surprising how many candidates multiplied out the resulting expression instead of using the common factor n(n+1). In part (b) the difference method was usually applied confidently and accurately, although many candidates used partial fractions both to prove the given result and to find the sum of the series. In part (c) the process of mathematical induction was very well understood and was frequently completed successfully.

(a)
$$\frac{1}{2}n(n+1)(2n+3)$$
; (b) $\frac{3}{2} - \frac{n+3}{(n+1)(n+2)}$.

Question 3 (Complex numbers)

In part (a) a large number of candidates were not able to find the moduli and arguments accurately. In part (b) there were a few attempts to equate real and imaginary parts treating w and z as if they were real numbers, but the great majority understood how to solve the equations. However, arithmetic slips were very common.

(a)
$$\alpha:\sqrt{8}, -\frac{3}{4}\pi, \beta:\sqrt{2}, \frac{3}{5}\pi, \alpha\beta:4, -\frac{3}{20}\pi, \frac{\alpha}{\beta}:2, \frac{13}{20}\pi;$$
 (b)(ii) $w=-5+6j, z=-2+j.$

Question 4 (Vectors and matrices)

This was the worst answered question, with an average mark of about 11. In part (a)(i) most candidates understood how to find the equation of the line of intersection. In part (a)(ii) the 'expected' method was to substitute from the line of intersection into the third equation; candidates who did this were able to solve the

equations quickly. However, most preferred to start afresh with three simultaneous equations and use elimination; very few then sustained the systematic approach necessary, and the constant k caused confusion, with many candidates producing a value for k. There were even a few attempts to find the inverse matrix. Part (b)(i) was very well understood, and the invariant lines were frequently found correctly. In part (b)(ii) the equations for invariant points were often written down correctly, but most candidates failed to make the correct conclusion from these equations.

(a)(i)
$$\mathbf{r} = \begin{pmatrix} 0 \\ -2 \\ 20 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}$$
; (ii) $x = \frac{4}{k}$, $y = -2 + \frac{2}{k}$, $z = 20 - \frac{10}{k}$;

(b)(i) 1, $\frac{1}{5}$; (ii) (0, 0) only.