

GCE

Mathematics

Advanced GCE **A2 7890 - 2**

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2007

3890-2/7890-2/MS/R/07

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 870 6622 Facsimile: 0870 870 6621

E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891)
Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	11
4724	Core Mathematics 4	15
4725	Further Pure Mathematics 1	19
4726	Further Pure Mathematics 2	25
4727	Further Pure Mathematics 3	31
4728	Mechanics 1	37
4729	Mechanics 2	43
4730	Mechanics 3	47
4731	Mechanics 4	53
4732	Probability & Statistics 1	59
4733	Probability & Statistics 2	65
4734	Probability & Statistics 3	69
4735	Probability & Statistics 4	75
4736	Decision Mathematics 1	79
4737	Decision Mathematics 2	85
*	Grade Thresholds	91

Mark Scheme 4721 June 2007

1	$(4x^2 + 20x + 25) - (x^2 - 6x + 9)$ = $3x^2 + 26x + 16$	M1		Square one bracket to give an expression of the form $ax^2 + bx + c$ $(a \ne 0, b \ne 0, c \ne 0)$
		A1		One squared bracket fully correct
		A1	3	All 3 terms of final answer correct
	Alternative method using difference of two squares: (2x + 5 + (x - 3))(2x + 5 - (x - 3)) = $(3x + 2)(x + 8)$ = $3x^2 + 26x + 16$		3	 M1 2 brackets with same terms but different signs A1 One bracket correctly simplified A1 All 3 terms of final answer correct
2 (a)(i)		B1		Excellent curve for $\frac{1}{x}$ in either quadrant
		B1	2	Excellent curve for $\frac{1}{x}$ in other quadrant
(ii)	\			SR B1 Reasonably correct curves in 1 st and 3 rd quadrants
(",		B1	1	Correct graph, minimum point at origin, symmetrical
(b)	Stretch Scale factor 8 in y direction or scale factor ½ in x direction	B1 B1	2	
	Gradult radio, 72 m/X amount		5	
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5}$ \times $\sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90}$ \times $\sqrt{2}$	M1		
	$=6\sqrt{5}$	A1	2	Correctly simplified answer
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified
	$= 15\sqrt{5}$	A1	3	cao
			5	

4 (1)	1 (4)2 4 1 1	1.1.4		
4 (i)	$(-4)^2 - 4 \times k \times k$	M1	_	Uses $b^2 - 4ac$ (involving k)
	$= 16 - 4k^2$	A1	2	$16 - 4k^2$
(ii)	$16-4k^2=0$	M1		Attempts $b^2 - 4ac = 0$ (involving k) or
				attempts to complete square (involving
	$k^2 = 4$			(k)
	k = 2	B1		,
	or $k = -2$	B1	3	
	5. K _			
			5	
5 (i)	Length = 20 – 2x	M1		Expression for length of enclosure in
				terms of x
		A1	2	Correctly shows that area = $20x - 2x^2$
	Area = $x(20 - 2x)$			AG
	Area = $x(20 - 2x)$ = $20x - 2x^2$			
(ii)	dA = 20 - 4x	M1		Differentiates area expression
(")	<u>uA</u>	1711		חוופופוווומופי מובמ פאטופיפוטוו
	1 900 0			
	For max, $20 - 4x = 0$,
				Uses $\frac{dy}{dx} = 0$
	x = 5 only	M1		$\frac{dx}{dx} = 0$
	Area = 50	A1		COST .
		A1	4	
			6	
6	$1 \text{ of } y = (y + 2)^2$	D4	O	Cubatituta for (v. 1.2) ² to got
6	Let $y = (x + 2)^2$	B1		Substitute for $(x + 2)^2$ to get
	$y^2 + 5y - 6 = 0$			$y^2 + 5y - 6 = 0$
	(y + 6)(y - 1) = 0	M1		Correct method to find roots
		A1		Both values for y correct
	y = -6 or y = 1			
		M1		Attempt to work out x
	$(x+2)^2 = 1$	A1		One correct value
	x = -1	A1	6	Second correct value and no extra real
	or $x = -3$		_	values
			6	
7 (a)	$f(x) = x + 3x^{-1}$ $f'(x) = 1 - 3x^{-2}$	M1		Attempt to differentiate
	2			
	$f'(x) = 1 - 3x^{-2}$	A1		First term correct
		A1		x ⁻² soi www
		A1	4	Fully correct answer
		' ` '	•	. any control anomor
(h)		M1		Lice of differentiation to find aredient
(b)	$\frac{dy}{dy} = \frac{5}{2} \sqrt{\frac{3}{2}}$	IVII		Use of differentiation to find gradient
	$\frac{dy}{dx} = \frac{5}{2} x^{\frac{3}{2}}$	D4		$\frac{5}{2}$ x ^c
		B1		2 ^
				3
		B1		$kx^{\frac{3}{2}}$
	, ,			
	When $y = 4 \frac{dy}{dx} = \frac{5}{3} \sqrt{4^3}$	M1		$\sqrt{4^3}$ soi
	When x = 4, $\frac{dy}{dx} = \frac{5}{2} \sqrt{4^3}$			
	= 20	A1	5	SR If 0 scored for first 3 marks, award
	_ Z 0		_	
			9	B1 if $\sqrt{4^n}$ correctly evaluated.

8 (i)	$(x+4)^2 - 16 + 15$	B1	a = 4
0 (1)	$= (x + 4)^2 - 10$	M1	15 – their a ²
	- (x · +) - i	A1 3	cao in required form
		/ ()	odo in required form
(ii)	(-4, -1)	B1 ft	Correct x coordinate
()	(', ')	B1 ft 2	Correct y coordinate
		M1	Correct method to find roots
		A1	-5, -3
(iii)	$x^2 + 8x + 15 > 0$	M1	Correct method to solve quadratic
	(x + 5)(x + 3) > 0		inequality eg +ve quadratic graph
			5 0
	x < -5, x > -3	A1 4	x < -5, x > -3
		9	(not wrapped, strict inequalities, no 'and')
9 (i)	$(x-3)^2 - 9 + y^2 - k = 0$	B1	
3 (1)	$(x-3)^2 + y^2 = 9 + k$		$(x-3)^2$ soi
	Centre (3, 0)	B1	Correct centre
	$9 + k = 4^2$	M1	Correct value for <i>k</i> (may be
	k = 7	A1 4	embedded)
		/	
			Alternative method using expanded
			form:
			Centre (- <i>g</i> , - <i>f</i>) M1
			Centre (3, 0) A1
			$4 = \sqrt{f^2 + g^2 - (-k)}$ M1
			k = 7 A1
			, , , , , , , , , , , , , , , , , , ,
(ii)	$(3-3)^2 + y^2 = 16$	M1	Attempt to substitute x = 3 into
	$y^2 = 16$		original equation or their equation
	y = 4	A1	$y = 4$ (do not allow ± 4)
			, (33 2 .,
	Length of AB = $\sqrt{(-1-3)^2} + (0-4)^2$	M1	Correct method to find line length
	V (-)		using Pythagoras' theorem
	$= \sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16+a^2}$
	$=4\sqrt{2}$	A1 5	cao
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft	
(,	T		
	y - 0 = m(x + 1) or $y - 4 = m$	M1	Attempts equation of straight line
	(x-3)		through their A or B with their gradient
		A1 3	Correct equation in any form with
	y = x + 1	40	simplified constants
		12	

10 (i)	(3x + 1)(x - 5) = 0 $x = \frac{-1}{3}$ or $x = 5$	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct
	3		SR B1 for x = 5 spotted www
(ii)	\ [/	B1	Positive quadratic (must be reasonably symmetrical)
		B1	y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4 x = 3	M1* A1	Equating their gradient expression to 4
	On curve, when x = 3, y = -20	A1 ft	Finding y co ordinate for their x value
	-20 = (4 x 3) + c c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method: $3x^2 - 14x - 5 = 4x + c$		
	$3x^2 - 14x - 5 = 4x + c$	M1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0$ has one solution	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^2 - 4ac = 0$	M1	Use of discriminant = 0
	$(-18)^2 - (4 \times 3 \times (-5 - c)) = 0$	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32

Mark Scheme 4722 June 2007

1	(i) $u_2 = 12$	B1	State $u_2 = 12$
	$u_3 = 9.6$, $u_4 = 7.68$ (or any exact equivs)	B1√ 2	Correct u_3 and u_4 from their u_2
	(ii) $S_{20} = \frac{15(1-0.8^{20})}{1-0.8}$	M1	Attempt use of $S_n = \frac{a(1-r^n)}{1-r}$, with $n = 20$ or 19
	$\begin{array}{ccc} \text{(ii)} & S_{20} - \frac{1}{1 - 0.8} \\ & = 74.1 \end{array}$	A1	Obtain correct unsimplified expression
	= /4.1	A1 3	Obtain 74.1 or better
	OR		
		M1	List all 20 terms of GP
		A2	Obtain 74.1
		5	
2	$(x+\frac{2}{x})^4 = x^4 + 4x^3(\frac{2}{x}) + 6x^2(\frac{2}{x})^2 + 4x(\frac{2}{x})^3 + (\frac{2}{x})^4$	M1*	Attempt expansion, using powers of x and $^2/_x$ (or
_	$(x \mid x) = x + 4x (x) + 6x (x) + 4x(x) + (x)$	1411	the two terms in their bracket), to get at least 4
			terms
		M1*	Use binomial coefficients of 1, 4, 6, 4, 1
		A1dep* A1	Obtain two correct, simplified, terms Obtain a further one correct, simplified, term
	$= x^4 + 8x^2 + 24 + \frac{32}{x^2} + \frac{16}{x^4}$ (or equiv)	A1 5	Obtain a fully correct, simplified, expansion
	$-x + 6x + 24 + \frac{1}{x^2} + \frac{1}{x^4} $ (or equiv) OR		Cotain a runy correct, simplified, expansion
	OK	M1*	Attempt expansion using all four brackets
		M1*	Obtain expansion containing the correct 5 powers
			only (could be unsimplified powers eg x^3 . x^{-1})
		A1dep*	Obtain two correct, simplified, terms
		A1	Obtain a further one correct, simplified, term
		A1	Obtain a fully correct, simplified, expansion
		5	
3	$\log 3^{(2x+1)} = \log 5^{200}$	M1	Introduce logarithms throughout
	$(2x+1)\log 3 = 200\log 5$	M1	Drop power on at least one side
		A1	Obtain correct linear equation (now containing no
	2001 5		powers)
	3 . 1 200 log 5	3.54	
	$2x + 1 = \frac{200 \log 5}{\log 3}$	M1	Attempt solution of linear equation
OP	$2x + 1 = \frac{200 \log 5}{\log 3}$ $x = 146$	M1 A1 5	Attempt solution of linear equation Obtain $x = 146$, or better
OR	x = 146		Obtain $x = 146$, or better
OR		A1 5 M1 M1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200
OR	$x = 146$ $(2x+1) = \log_3 5^{200}$	A1 5 M1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation
OR	$x = 146$ $(2x+1) = \log_3 5^{200}$	A1 5 M1 M1 A1 M1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation
OR	$x = 146$ $(2x+1) = \log_3 5^{200}$	A1 5 M1 M1 A1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	A1 5 M1 M1 A1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better
<i>OR</i> 4	$x = 146$ $(2x+1) = \log_3 5^{200}$	A1 5 M1 M1 A1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2$,
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	A1 5 M1 M1 A1 M1 A1 5 M1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	A1 5 M1 M1 A1 M1 A1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	A1 5 M1	Obtain $x = 146$, or better Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only
	$x = 146$ $(2x+1) = \log_3 5^{200}$ $2x+1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$	A1 5 M1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94	A1 5 M1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4)
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94 (ii) This is an underestimate	A1 5 M1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4) State underestimate
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) $\operatorname{area} \approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94 (ii) This is an underestimateas the tops of the trapezia are below	A1 5 M1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4)
	$x = 146$ $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$ (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$ $\approx 0.25 \times 23.766$ ≈ 5.94 (ii) This is an underestimate	A1 5 M1	Obtain $x = 146$, or better Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better Attempt y-values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv Obtain 5.94 or better (answer only is 0/4) State underestimate

5	(i)	$3(1-\sin^2\theta) = \sin\theta + 1$ $3-3\sin^2\theta = \sin\theta + 1$	M1		Use $\cos^2 \theta = 1 - \sin^2 \theta$
		$3\sin^2\theta + \sin\theta - 2 = 0$	A1	2	Show given equation correctly
	(ii)	$(3\sin\theta - 2)(\sin\theta + 1) = 0$	M1		Attempt to solve quadratic equation in $\sin \theta$
		$\sin \theta = \frac{2}{3}$ or -1	A1		Both values of $\sin\theta$ correct
		$\theta = 42^{\circ}, 138^{\circ}, 270^{\circ}$	A1		Correct answer of 270°
			A1 A1√	5	Correct answer of 42° For correct non-principal value answer, following
					their first value of θ in the required range
					(any extra values for θ in required range is max $4/5$)
					(radians is max 4/5)
					SR: answer only (or no supporting method) is B1
				7	for 42° , $B1$ for 138° , $B1$ for 270°
6	(a)	(i) $\int x^3 - 4x = \frac{1}{4}x^4 - 2x^2 + c$	M1		Expand and attempt integration
			A1		Obtain $\frac{1}{4}x^4 - 2x^2$ (A0 if \int or dx still present)
			B1	3	+c (mark can be given in (b) if not gained here)
		(ii) $\left[\frac{1}{4}x^4 - 2x^2\right]_1^6$	M1		Use limits correctly in integration attempt (ie F(6)
					-F(1))
		$= (324 - 72) - (\frac{1}{4} - 2)$ $= 253\frac{3}{4}$	A1	2	Obtain 253¾ (answer only is M0A0)
	(b)	$\int 6x^{-3} dx = -3x^{-2} + c$	В1		Use of $\frac{1}{x^3} = x^{-3}$
			M1		Obtain integral of the form kx^{-2}
			A1	3	Obtain correct $-3x^{-2}$ (+ c) (A0 if \int or dx still present, but only penalise once
					in question)
				8	
7	(a)	$S_{70} = \frac{70}{2} \left\{ (2 \times 12) + (70 - 1)d \right\}$	M1		Attempt S_{70}
		35(24+69d) = 12915	A1 M1		Obtain correct unsimplified expression Equate attempt at S_{70} to 12915, and attempt to find
		33(24 + 674) - 12713	1011		d
OR		<i>d</i> = 5	A1	4	Obtain $d = 5$
On		$\frac{70}{2}$ {12 + <i>l</i> } = 12915	M1		Attempt to find <i>d</i> by first equating $^{n}/_{2}(a+l)$ to
					12915
		l = 357 $12 + 69d = 357$	A1 M1		Obtain $l = 357$ Equate u_{70} to l
		d = 5	A1		Obtain $d = 5$
	(b)	ar = -4	В1		Correct statement for second term
	` '	$\frac{a}{1-r} = 9$	B1		Correct statement for sum to infinity
		$\frac{-4}{r} = 9 - 9r$ or $a = 9 - (9 \times \frac{-4}{a})$	M1		Attempt to eliminate either a or r
		$9r^2 - 9r - 4 = 0 a^2 - 9a - 36 = 0$	A1		Obtain correct equation (no algebraic
		(2 4)(2 1) 2 (2)(12) 2			denominators/brackets)
		(3r-4)(3r+1)=0 $(a+3)(a-12)=0$	M1		Attempt solution of three term quadratic equation
		$r = \frac{4}{3}$, $r = -\frac{1}{3}$ $a = -3$, $a = 12$	A1		Obtain at least $r = -\frac{1}{3}$ (from correct working only)
	Heno	$ce r = -\frac{1}{3}$	A1	7	Obtain $r = -\frac{1}{3}$ only (from correct working only)
				11	SR: answer only / T&I is B2 only
				11	

8	(i)	$\frac{1}{2} \times 2$	$4B^2 \times 0.9 = 16.2$	M1	Use $(\frac{1}{2})r^2\theta = 16.2$
		2	$AB^2 = 36 \Rightarrow AB = 6$	A1 16.2	2 Confirm $AB = 6$ cm (or verify $\frac{1}{2}$ x 6^2 x $0.9 =$
	(ii)	-	$6 \times AC \times \sin 0.9 = 32.4$ = 13.8 cm	M1* M1dep*	Use $\Delta = \frac{1}{2}bc \sin A$, or equiv Equate attempt at area to 32.4 Obtain $AC = 13.8$ cm, or better
	(iii)	BC Hen	$ce BC = 11.1 cm$ $= 6 \times 0.9 = 5.4 cm$	M1 A1√ A1	Attempt use of correct cosine formula in $\triangle ABC$ Correct unsimplified equation, from their AC Obtain $BC = 11.1$ cm, or anything that rounds to this State $BD = 5.4$ cm (seen anywhere in question)
			ce perimeter = $11.1 + 5.4 + (13.8 - 6)$ = 24.3 cm	M1	Attempt perimeter of region <i>BCD</i> Obtain 24.3 cm, or anything that rounds to this
9	(i)	(a)	f(-1) = -1 + 6 - 1 - 4 = 0	B1	1 Confirm $f(-1) = 0$, through any method
		(b)	x = -1 f(x) = (x + 1)(x ² + 5x - 4)	B1 M1 A1 A1	State $x = -1$ at any point Attempt complete division by $(x + 1)$, or equiv Obtain $x^2 + 5x + k$ Obtain completely correct quotient
			$x = \frac{-5 \pm \sqrt{25 + 16}}{2}$	M1	Attempt use of quadratic formula, or equiv, find
			$x = \frac{1}{2} \left(-5 \pm \sqrt{41} \right)$	A1	6 Obtain $\frac{1}{2} \left(-5 \pm \sqrt{41} \right)$
	(ii)	(a)	$\log_2(x+3)^2 + \log_2 x - \log_2(4x+2) = 1$	B1 M1	State or imply that $2\log (x + 3) = \log (x + 3)^2$ Add or subtract two, or more, of their algebraic logs correctly
			$\log_2\left(\frac{(x+3)^2 x}{4x+2}\right) = 1$	A1	Obtain correct equation (or any equivalent, with single term on each side)
			$\frac{(x+3)^2 x}{4x+2} = 2$ $(x^2 + 6x + 9)x = 8x + 4$	B1	Use $\log_2 a = 1 \Rightarrow a = 2$ at any point
			$x^{3} + 6x^{2} + x - 4 = 0$	A1	5 Confirm given equation correctly
		(b)	$x > 0$, otherwise $\log_2 x$ is undefined $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$	B1* B1√dep	their
				14	single positive root in (i)(b)

Mark Scheme 4723 June 2007

1 (i)	Attempt use of product rule	M1		
	Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$	A1		2 or equiv
	Or: (following complete expansion and differentiation)		m t	
(44)	Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$	B2		allow B1 if one term incorrect]
(ii)	Obtain derivative of form $kx^3(3x^4+1)^n$	M1		any constants k and n
	Obtain derivative of form $kx^3(3x^4+1)^{-\frac{1}{2}}$	M1		
	Obtain correct $6x^3(3x^4+1)^{-\frac{1}{2}}$	A1		3 or (unsimplified) equiv
2	Identify critical value $x = 2$	B1		
	Attempt process for determining both			
	critical values	M1		
	Obtain $\frac{1}{3}$ and 2	A1		
	Attempt process for solving inequality	M1		table, sketch; implied by plausible answer
	Obtain $\frac{1}{3} < x < 2$	A1	5	1
3 (i)	Attempt correct process for composition	M1		numerical or algebraic
- (-)	Obtain (16 and hence) 7	A1	2	
(ii)	Attempt correct process for finding inverse	M1		maybe in terms of y so far
()	Obtain $(x-3)^2$	A1	2	or equiv; in terms of x , not y
	,			
(iii)	Sketch (more or less) correct $y = f(x)$	B1		with 3 indicated or clearly implied on <i>y</i> -axis, correct curvature, no maximum point
	Sketch (more or less) correct $y = f^{-1}(x)$	В1		right hand half of parabola only
	State reflection in line $y = x$	B1	3	or (explicit) equiv; independent of earlier marks
4 (i)	Obtain integral of form $k(2x+1)^{\frac{4}{3}}$	M1		or equiv using substitution; any constant k
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$	A1		or equiv
	Substitute limits in expression of form $(2x+1)^n$			•
	and subtract the correct way round	M1		using adjusted limits if subn used
	Obtain 30	A1	4	using adjusted mines it such ased
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k
	Identify k as $\frac{1}{3} \times 6.5$	A1		
	Obtain 29.6	A1	3	or greater accuracy (29.554566)
	[SR: (using Simpson's rule with 4 strips)			
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$			
	and hence 29.9	B1		or greater accuracy (29.897)]

5 (i)	State e	$^{-0.04t} = 0.5$	В1		or equiv
C (1)		t solution of equation of form $e^{-0.04t} = k$	M1		using sound process; maybe
	1 1000 111p	v designation of terms of the same	1,11		implied
	Obtain	17	A1	3	or greater accuracy (17.328)
(ii)	Differe	ntiate to obtain form $k e^{-0.04t}$	*M1	l	constant k different from 240
	Obtain	$(\pm) 9.6e^{-0.04t}$	A1		or (unsimplified) equiv
		attempt at first derivative to (±) 2.1 and			
	attempt Obtain	solution	M1 A1	4	dep *M; method maybe implied or greater accuracy (37.9956)
	Obtain	30	AI	4	of greater accuracy (37.9930)
6 (i)	Obtain	integral of form $k_1 e^{2x} + k_2 x^2$	M1		any non-zero constants k_1, k_2
U (1)		correct $3e^{2x} + \frac{1}{2}x^2$	A1		uny non zero consums w ₁ , w ₂
		-			
		$3e^{2a} + \frac{1}{2}a^2 - 3$	A1		
	_	definite integral to 42 and attempt ngement	M1		using sound processes
		n	A1	5	AG; necessary detail required
		2 (- 6)			.,
(ii)		correct first iterate 1.348	B1		
	Attemp 2 iterate	t correct process to find at least	M1		
		at least 3 correct iterates	A1		
	Obtain		A 1	4	answer required to exactly 3 d.p.;
		$[1 \to 1.34844 \to 1.3438]$	22 . 1	242	allow recovery after error
		$[1 \rightarrow 1.34644 \rightarrow 1.3436]$	52 → 1.	.343	
7 (i)	Show c	orrect general shape (alternating above			
7 (i)	and bel	orrect general shape (alternating above ow <i>x</i> -axis)	M1		with no branch reaching <i>x</i> -axis
7 (i)	and bel		M1 A1	2	with at least one of 1 and -1
7 (i)	and bel	ow x-axis)		2	
7 (i) (ii)	and bel Draw (1	ow x-axis)		2	with at least one of 1 and -1
	and bel Draw (1 Attemp Obtain	ow <i>x</i> -axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π	A1 M1 A1	2	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy
	and bel Draw (1 Attemp Obtain	ow <i>x</i> -axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$	A1 M1	2	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others
	and bel Draw (1 Attemp Obtain	ow <i>x</i> -axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π	A1 M1 A1	Ī	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π	M1 A1 A1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once
	and bel Draw (1 Attemp Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π	M1 A1 A1 any	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$	M1 A1 A1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π	M1 A1 A1 any	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$	M1 A1 A1 any A1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π	M1 A1 A1 A1 AN AN AN AN	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$	M1 A1 A1 any A1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.)	M1 A1 A1 any A1 M1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ± 1 in third sig fig; or greater
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio	M1 A1 A1 A1 M1 M1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ± 1 in third sig fig; or greater accuracy
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value	M1 A1 A1 any A1 M1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ± 1 in third sig fig; or greater
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value Attempt solution at least to find one	M1 A1 A1 A1 M1 M1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ± 1 in third sig fig; or greater accuracy
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value Attempt solution at least to find one value in first quadrant and one value in third	M1 A1 A1 A1 M1 M1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ± 1 in third sig fig; or greater accuracy
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x -axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value Attempt solution at least to find one value in first quadrant and one value in third Obtain 1.37 and 4.51	M1 A1 A1 A1 M1 A1 M1 A1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ± 1 in third sig fig; or greater accuracy $\tan^2 \theta = 25, \cos^2 \theta = \frac{1}{26}$,
(ii)	and bel Draw (i Attemp Obtain Obtain	ow x-axis) more or less) correct sketch t solution of $\cos x = \frac{1}{3}$ 1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ , $\theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value Attempt solution at least to find one value in first quadrant and one value in third	M1 A1 A1 A1 M1 A1 A1	3	with at least one of 1 and -1 indicated or clearly implied maybe implied; or equiv or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ± 1 in third sig fig; or greater accuracy

- Attempt use of quotient rule 8 (i)
 - Obtain $\frac{(4 \ln x + 3) \frac{4}{x} (4 \ln x 3) \frac{4}{x}}{(4 \ln x + 3)^2}$
 - Confirm $\frac{24}{x(4\ln x + 3)^2}$

- M1 allow for numerator 'wrong way round'; or equiv
- **A**1 or equiv

В1

В1

A1 3 AG; necessary detail required

- Identify $\ln x = \frac{3}{4}$ (ii)
 - State or imply $x = e^{\frac{3}{4}}$

- Substitute e^k completely in expression for derivative
- Obtain $\frac{2}{3}e^{-\frac{3}{4}}$

B1

or equiv

- and deal with $\ln e^k$ term M1
- **A**1 4 or exact (single term) equiv
- State or imply $\int \frac{4\pi}{x(4\ln x + 3)^2} \, dx$ (iii)

Obtain integral of form $k \frac{4 \ln x - 3}{4 \ln x + 3}$

or $k(4 \ln x + 3)^{-1}$

Substitute both limits and subtract right way round

Obtain $\frac{4}{21}\pi$

*M1 any constant k

M1 dep *M

A1 or exact equiv

Attempt use of either of $tan(A \pm B)$ identities 9 (i)

Substitute $\tan 60^{\circ} = \sqrt{3}$ or $\tan^2 60^{\circ} = 3$

Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$

- Obtain $\frac{\tan^2 \theta 3}{1 3 \tan^2 \theta}$

(ii)

M1 В1

> **A**1 or equiv (perhaps with tan 60°

> > still involved)

AG

- Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of

equation involving $\tan^2 \theta$

Obtain $\tan^4 \theta = \frac{1}{3}$

Obtain 37.2 Obtain 142.8 B1

A1

- M1 or equiv involving $\sec \theta$
- or equiv $\sec^2 \theta = 1.57735...$ **A**1
- or greater accuracy **A**1
- or greater accuracy; and no others A1 5 between 0 and 180
- Attempt rearrangement of $\frac{\tan^2 \theta 3}{1 3 \tan^2 \theta} = k^2$ to form (iii)

 $\tan^2 \theta = \frac{f(k)}{g(k)}$

M1

Obtain $\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$

A1

Observe that RHS is positive for all k, giving one value in each quadrant

A1 3 or convincing equiv

Mark Scheme 4724 June 2007

4724	Mark Sche	eme	June 2007
1	(i) Correct format $\frac{A}{x+2} + \frac{B}{x-3}$	M1	s.o.i. in answer
	A = 1 and $B = 2(ii) -A(x+2)^{-2} - B(x-3)^{-2} f.t.$	A1 2 √A1	for both
	Convincing statement that each denom > 0 State whole exp < 0 AG	B1 B1 3	accept ≥ 0 . Do not accept $x^2 > 0$. Dep on previous 4 marks.
2	Use parts with $u = x^2$, $dv = e^x$	*M1	obtaining a result $f(x) + /- \int g(x)(dx)$
	Obtain $x^2e^x - \int 2xe^x (dx)$	A1	·
	Attempt parts again with $u = (-)(2)x$, $dv = e^x$	M1	
	Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets	A1	s.o.i. eg $e + (-2x + 2)e^x$
	Use limits correctly throughout $e^{(1)} - 2$ ISW Exact answer only	dep*M1 A1 6	Tolerate (their value for $x = 1$) (-0) Allow 0.718 \rightarrow M1
		,	6
3	Volume = $(k)\int_{0}^{\pi} \sin^2 x (dx)$	B1	where $k = \pi, 2\pi$ or 1; limits necessary
	Suitable method for integrating $\sin^2 x$	*M1	eg $\int +/-1+/-\cos 2x (dx)$ or single
			integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x (\mathrm{d}x) = \frac{1}{2} \int 1 - \cos 2x (\mathrm{d}x)$	A1	or $-\sin x \cos x + \int \cos^2 x (\mathrm{d}x)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1	or $-\sin x \cos x + \int 1 - \sin^2 x (dx)$
	Use limits correctly	dep*M1	D
	Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	A1 6	Beware : wrong working leading to $\frac{1}{2}\pi^2$
	(4 x)-2		
4	(i) $ \frac{\left(1 + \frac{x}{2}\right)^{-2}}{1 + \left(-2\right)\left(\frac{x}{2}\right) + \frac{-23}{2}\left(\frac{x}{2}\right)^2 + \frac{-234}{3!}\left(\frac{x}{2}\right)^3} $	M1	Clear indication of method of ≥ 3 terms
	= 1- <i>x</i>	B1	First two terms, not dependent on M1
	$+\frac{3}{4}X^2-\frac{1}{2}X^3$	A1	For both third and fourth terms
	$(2+x)^{-2} = \frac{1}{4} \left(\text{their exp of } (1+ax)^{-2} \right) \text{ mult out}$	√B1	Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ x < 2 \text{ or } -2 < x < 2 \text{ (but not } \left \frac{1}{2}x \right < 1)$	B1 5	
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d$	M1	
	$-\frac{3}{8} \left(x^3\right)$	√A1 2	Follow-through from $b + d$

$ 5(i) \ \frac{dy}{dx} - \frac{\frac{2}{dx}}{\frac{dx}{dx}} \\ = \frac{-4 \sin 2t}{-\sin t} \\ = 8 \cos t $ AG (ii) Use $\cos 2t - 2 \cos^2 t + t - 1$ or $1 - 2 \cos^2 t$ M1 (iii) Use $\cos 2t - 2 \cos^2 t - t - 1$ A1 Subst $x = \cos t, y = 3 + 2 \cos 2t$ M1 (iii) Use $\cos 2t - 2 \cos^2 t - t - 1$ A1 Subst $x = \cos t, y = 3 + 2 \cos 2t$ M1 Obtain $0 = 0$ or $4 \cos^2 t + 1$ AG Subst $x = \cos t, y = 3 + 2 \cos 2t$ M1 Obtain $0 = 0$ or $4 \cos^2 t + 1$ AG Subst $x = \cos t, y = 3 + 2 \cos 2t$ M1 Obtain $0 = 0$ or $4 \cos^2 t + 1$ AG Subst $x = \cos t, y = 3 + 2 \cos 2t$ M1 Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Obtain $0 = 0$ or $4 \cos^2 t + 1 - 4 \cos^2 t + 1$ An Apy labelling must be correct Bin $0 = 0$ or $0 = 0 = 0$ or $0 = 0$				1
$ \begin{array}{c} -\sin t \\ \leq 8 \cos t \\ \leq 8 \end{array} \qquad \qquad$	5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1	
= 8 cos t		$= \frac{-4\sin 2t}{-\sin t}$	A1	Accept $\frac{4 \sin 2t}{\sin t}$ WWW
(ii) Use $\cos 2t = 2\cos^2 t + /-1$ or $1 - 2\cos^2 t$ Use correct version $\cos 2t = 2\cos^2 t - 1$ Produce WWW $y = 4x^2 + 1$ AG A1 A2 A3 (iii) U-shaped parabola abve x -axis, sym abt y -axis Portion between $(-1,5)$ and $(1,5)$ N.B. If (ii) answered or quoted before (i) attempted. A1 A2 A3 (iii) U-shaped parabola abve x -axis, sym abt y -axis Portion between $(-1,5)$ and $(1,5)$ N.B. If (ii) answered or quoted before (i) attempted. A3 A4 A4 A5 A6 A1 A1 A1 A1 A1 A1 A1 A1 A1			A1	
Use correct version $\cos 2t = 2\cos^2 t - 1$ Produce WWW $y = 4x^2 + 1$ AG A1 But the substitute $x = \cos t$, $y = 3 + 2\cos 2t$ A1 But the substitute $x = \cos t$, $y = 3 + 2\cos 2t$ A1 But the substitute $x = \cos t$, $y = 3 + 2\cos 2t$ B1 Correct version occurrents B1 B1 B1 B1 B1 B1 B1 B1 B1 B		≤ 8 AG	A1 4	with brief explanation eg $\cos t \le 1$
Produce WWW $y = 4x^2 + 1$ AG A1 3 Either substitute \underline{a} formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Any labelling must be correct either $x = \pm 1$ or $y = 5$ must be marked (i) B2 for $\frac{dy}{dx} = 8x + B1, B1$ if earned. 9 81		(ii) Use $\cos 2t = 2\cos^2 t + /-1 \text{ or } 1 - 2\cos^2 t$	M1	If starting with $y = 4x^2 + 1$, then
Obtain 0=0 or $4\cos^2t + 1 = 4\cos^2t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain or formula & say it's correct A1 Any labelling must be correct with Any labelling		Use correct version $\cos 2t = 2\cos^2 t - 1$	A1	Subst $x = \cos t, y = 3 + 2\cos 2t$ M1
(iii) U-shaped parabola abve x -axis, sym abt y -axis Portion between $(-1,5)$ and $(1,5)$ N.B. If (ii) answered or quoted before (i) attempted, allow in part (i) B2 for $\frac{dv}{dx} = 8x + B1,B1$ if earned. 6 (i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$ Using $d(uv) = u dv + v du$ for the $(3)xy$ term $\frac{d}{dx}(x^2 + 3xy + 4y^2) = 2x + 3x \frac{dy}{dx} + 3y + 8y \frac{dy}{dx}$ Solve for $\frac{dy}{dx}$ & subst $(x,y) = (2,3)$ M1 or v.v. Subst now or at normal eqn stage; (M1 dep on either/both B1 M1 earned) Implied if grad normal = $\frac{30}{13}$ Grad normal = $\frac{30}{13}$ follow-through Sind equ any line thro $(2,3)$ with any num grad $30x - 13y - 21 = 0$ AEF 7 (i) Leading term in quotient = $2x$ Suff evidence of division or identity process Quotient = $2x + 3$ Remainder = x (ii) their quotient + $\frac{their}{x^2 + 4}$ (iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ their $\frac{Cx}{x^2 + 4}$ integrated as $\frac{1}{2}Ax^2 + Bx$ $\frac{Cx}{x^2 + 4}$ integrated as $\frac{1}{2}Ax^2 + Bx$ $\frac{Cx}{x^2 + 4}$ integrated as $\frac{1}{2}Ax^2 + 4$		Produce WWW $y = 4x^2 + 1$ AG	A1 3	Either substitute a formula for cos 2t M1
6				Or Manip to give formula for cos 2t M1 Obtain corr formula & say it's correct A1 Any labelling must be correct
Using $d(uv) = u dv + v du$ for the $(3)xy$ term $\frac{d}{dx}\left(x^2 + 3xy + 4y^2\right) = 2x + 3x \frac{dy}{dx} + 3y + 8y \frac{dy}{dx}$ Solve for $\frac{dy}{dx}$ & subst $(x, y) = (2,3)$ M1 or v.v. Subst now or at normal eqn stage; (M1 dep on either/both B1 M1 earned) $\frac{dy}{dx} = -\frac{13}{30}$ Grad normal = $\frac{30}{13}$ follow-through Find equ any line thro $(2,3)$ with any num grad $30x - 13y - 21 = 0$ AEF M1 A1 B1 No fractions in final answer 8 7 (i) Leading term in quotient = $2x$ Suff evidence of division or identity process Quotient = $2x + 3$ Remainder = x (ii) their quotient + $\frac{their}{x^2 + 4}$ (iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ This f.t. mark awarded only if numerical No fractions in final answer 8 8 8 8 1 Stated or in relevant position in division Accept $\frac{x}{x^2 + 4}$ as remainder $\frac{x}{x^2 + 4}$ (iii) Working with their expression in part (iii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ Their $\frac{Cx}{x^2 + 4}$ integrated as $\frac{1}{2}Ax^2 + Bx$ This f.t. mark awarded only if numerical No fractions in final answer 8 8 8 1 1 1 2 2 3 3 3 4 4 4 4 4 5 8 8 1 1 1 1 1 1 1 1 1 1 1		N.B. If (ii) answered or quoted before (i) attempted,	allow in par	(i) B2 for $\frac{dy}{dx} = 8x + B1$, B1 if earned. 9
$\frac{d}{dx}\left(x^2+3xy+4y^2\right)=2x+3x\frac{dy}{dx}+3y+8y\frac{dy}{dx}$ Solve for $\frac{dy}{dx}$ & subst $(x,y)=(2,3)$ M1 or v.v. Subst now or at normal eqn stage; (M1 dep on either/both B1 M1 earned) $\frac{dy}{dx}=-\frac{13}{30}$ Grad normal = $\frac{30}{13}$ follow-through Find equ any line thro $(2,3)$ with any num grad $30x-13y-21=0$ AEF 7 (i) Leading term in quotient = $2x$ Suff evidence of division or identity process Quotient = $2x+3$ Remainder = x (ii) their quotient + $\frac{their}{x^2+4}$ (iii) Working with their expression in part (ii) their $Ax+B$ integrated as $x \ln(x^2+4)$ $x = \frac{1}{2}C$ Limits used correctly throughout $\frac{1}{14+\frac{1}{2}}\ln\frac{13}{5}$ A1 A1 A1 A1 B1 Or v.v. Subst now or at normal eqn stage; (M1 dep on either/both B1 M1 earned) Implied if grad normal = $\frac{30}{13}$ This f.t. mark awarded only if numerical No fractions in final answer 8 8 8 8 8 8 8 8 8 8 8 8 8	6	(i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1	
Solve for $\frac{dy}{dx}$ & subst (x,y) = $(2,3)$ $\frac{dy}{dx} = -\frac{13}{30}$ Grad normal = $\frac{30}{13}$ Find equ any line thro $(2,3)$ with any num grad $30x - 13y - 21 = 0$ AEF 7 (i) Leading term in quotient = $2x$ Suff evidence of division or identity process Quotient = $2x + 3$ Remainder = x (ii) their quotient + $\frac{their}{x^2 + 4}$ (iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ their $\frac{Cx}{x^2 + 4}$ integrated as $k \ln(x^2 + 4)$ $k = \frac{1}{2}C$ Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$ M1 A1 M2 M3 M4 M5 M6 M6 M7 M1 M1 M1 M1 M1 M1 M1 M1 M1		Using $d(uv) = u dv + v du$ for the (3)xy term	M1	
$\frac{dy}{dx} = -\frac{13}{30}$ $Grad normal = \frac{30}{13}$ $Grad normal = 3$		$\frac{d}{dx}(x^{2} + 3xy + 4y^{2}) = 2x + 3x\frac{dy}{dx} + 3y + 8y\frac{dy}{dx}$	A1	
$\frac{dy}{dx} = -\frac{13}{30}$ $Grad normal = \frac{30}{13} \qquad follow-through$ $Find equ $		Solve for $\frac{dy}{dx}$ & subst $(x, y) = (2,3)$	M1	or v.v. Subst now or at normal eqn stage;
Grad normal = $\frac{30}{13}$ follow-through Find equ any line thro (2,3) with any num grad 30x - 13y - 21 = 0 AEF (i) Leading term in quotient = $2x$ Suff evidence of division or identity process Quotient = $2x + 3$ Remainder = x A1 (ii) their quotient + $\frac{their}{x^2 + 4}$ (iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ $\frac{Cx}{x^2 + 4}$ (init) used correctly throughout $\frac{1}{4}$ \frac		υλ ·		(M1 dep on either/both B1 M1 earned)
Find equ any line thro (2,3) with any num grad $30x - 13y - 21 = 0$ AEF (i) Leading term in quotient = $2x$ Suff evidence of division or identity process Quotient = $2x + 3$ Remainder = x (ii) their quotient + $\frac{1}{x^2 + 4}$ with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ their $\frac{Cx}{x^2 + 4}$ integrated as $k \ln(x^2 + 4)$ M1 $k = \frac{1}{2}C$ Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$ No fractions in final answer 8		$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{13}{30}$	A1	
Find equ any line thro (2,3) with any num grad $30x - 13y - 21 = 0$ AEF (i) Leading term in quotient = $2x$ Suff evidence of division or identity process Quotient = $2x + 3$ Remainder = x (ii) their quotient + $\frac{1}{x^2 + 4}$ with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ their $\frac{Cx}{x^2 + 4}$ integrated as $k \ln(x^2 + 4)$ M1 $k = \frac{1}{2}C$ Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$ No fractions in final answer 8		Grad normal = $\frac{30}{13}$ follow-through	√B1	This f.t. mark awarded only if numerical
Suff evidence of division or identity process Quotient = $2x + 3$ Remainder = x A1 A1 A2 Accept $\frac{x}{x^2 + 4}$ as remainder (ii) their quotient + $\frac{x^2 + 4}{x^2 + 4}$ (iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ $Ax + \frac{x}{x^2 + 4}$ WB1 Their $\frac{Cx}{x^2 + 4}$ integrated as $k \ln(x^2 + 4)$ $k = \frac{1}{2}C$ Limits used correctly throughout $\frac{x}{14 + \frac{1}{2} \ln \frac{13}{5}}$ A1 A2 A3 A4 A4 A4 ACCEPT $\frac{x}{x^2 + 4}$ as remainder $2x + 3 + \frac{x}{x^2 + 4}$ UB1 Ignore any integration of $\frac{D}{x^2 + 4}$		Find equ <u>any</u> line thro (2,3) with <u>any</u> num grad		No fractions in final answer 8
Suff evidence of division or identity process Quotient = $2x + 3$ Remainder = x A1 A1 A2 Accept $\frac{x}{x^2 + 4}$ as remainder (ii) their quotient + $\frac{x^2 + 4}{x^2 + 4}$ (iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ $Ax + \frac{x}{x^2 + 4}$ WB1 Their $\frac{Cx}{x^2 + 4}$ integrated as $k \ln(x^2 + 4)$ $k = \frac{1}{2}C$ Limits used correctly throughout $\frac{x}{14 + \frac{1}{2} \ln \frac{13}{5}}$ A1 A2 A3 A4 A4 A4 ACCEPT $\frac{x}{x^2 + 4}$ as remainder $2x + 3 + \frac{x}{x^2 + 4}$ UB1 Ignore any integration of $\frac{D}{x^2 + 4}$		(i) Londing towns in questions — 2 v	D4	
Quotient = $2x + 3$ Remainder = x A1 A1 A2 Accept $\frac{X}{x^2 + 4}$ as remainder (ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$ (iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ A1 A2 A3 A4 Accept $\frac{X}{x^2 + 4}$ as remainder $2x + 3 + \frac{X}{x^2 + 4}$ AB1 AB1 Ignore any integration of $\frac{D}{x^2 + 4}$ Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$ A1 A2 ACCEPT $\frac{X}{x^2 + 4}$ as remainder $2x + 3 + \frac{X}{x^2 + 4}$ AB1 Ignore any integration of $\frac{D}{x^2 + 4}$ Ignore any integration of $\frac{D}{x^2 + 4}$ Ignore any integration of $\frac{D}{x^2 + 4}$ A1 Ignore any integration of $\frac{D}{x^2 + 4}$ Ignore any integration of $\frac{D}{x^2 + 4}$	1			
(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$ $\sqrt{B1}$ $\sqrt{A1}$ $\sqrt{A1}$				Stated or in relevant position in division
(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$ (iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ $\frac{Cx}{x^2 + 4}$ integrated as $k \ln (x^2 + 4)$ M1 Ignore any integration of $\frac{D}{x^2 + 4}$ $k = \frac{1}{2}C$ $\sqrt{A1}$ Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$ M1 Ignore any integration of $\frac{D}{x^2 + 4}$ $\sqrt{A1}$ $\sqrt{A1}$ $\sqrt{A1}$ $\sqrt{A1}$ $\sqrt{A2}$ $\sqrt{A3}$ $\sqrt{A4}$		Remainder = x	A1 4	Accept $\frac{x}{x^2 + 4}$ as remainder
their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ their $\frac{Cx}{x^2 + 4}$ integrated as $k \ln(x^2 + 4)$ $k = \frac{1}{2}C$ Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$ M1 M1 A1 S logs need not be combined.		(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$	√B1 1	$2x+3+\frac{x}{x^2+4}$
their $\frac{Cx}{x^2 + 4}$ integrated as $k \ln(x^2 + 4)$ M1 Ignore any integration of $\frac{D}{x^2 + 4}$ $k = \frac{1}{2}C$ $\sqrt{A1}$ Limits used correctly throughout $\frac{1}{4} + \frac{1}{2} \ln \frac{13}{5}$ A1 S logs need not be combined.			√B1	
$k = \frac{1}{2}C$ Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$ $\sqrt{A1}$ M1 A1 $\sqrt{A1}$ In the second of the combined		_		Ignore any integration of $\frac{D}{2}$
Limits used correctly throughout $M1$ $A1 + \frac{1}{2} \ln \frac{13}{5}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$			√ A 1	x + 4
$14 + \frac{1}{2} \ln \frac{13}{5}$ A1 5 logs need not be combined.		-		
		· · · · · · · · · · · · · · · · · · ·		logs need not be combined.
		-		10

			\neg	
8	(i) Sep variables eg $\int \frac{1}{6-h} (dh) = \int \frac{1}{20} (dt)$	*M1		s.o.i. $\underline{Or} \frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$
	$LHS = -\ln(6-h)$	A1		& then $t = -20 \ln(6 - h)$ (+c) \rightarrow A1+A1
	$RHS = \frac{1}{20}t (+c)$	A1		
	Subst $t = 0, h = 1$ into equation containing 'c'	dep*M1		
	Correct value of their c = $-(20) \ln 5$ WWW	A1		or (20)In 5 if on LHS
	Produce $t = 20 \ln \frac{5}{6-h}$ WWW AG	A1 (6	Must see $\ln 5 - \ln(6 - h)$
	(ii) When $h = 2$, $t = 20 \ln \frac{5}{4} = 4.46(2871)$	B1	1	Accept 4.5, $4\frac{1}{2}$
	(iii) Solve $10 = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$	M1		or $\frac{6-h}{5} = e^{-0.5}$ or suitable $\frac{1}{2}$ -way stage
	h = 2.97(2.9673467)[In (ii),(iii) accept non-decimal (exact) answersAccept truncated values in (ii),(iii).		- 1	$6-5e^{-0.5}$ or $6-e^{1.109}$ e.]
	(iv) Any indication of (approximately) 6 (m)	B1	1	10
9	(i) Use −6 i + 8j −2 k and i + 3j + 2k only Correct method for scalar product Correct method for magnitude	M1 M1 M1		of <u>any</u> two vectors $(-6+24-4=14)$ of <u>any</u> vector $(\sqrt{36+64+4}=\sqrt{104})$ or
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been general		4	$\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j]
	(ii) Indication that relevant vectors are parallel	M1		-6i+8j-2k&3i+cj+k with some indic of method of attack
	c = -4	A1 :	2	eg $-6\mathbf{i} + 8\mathbf{j} - 2\mathbf{k} = \lambda(3\mathbf{i} + c\mathbf{j} + \mathbf{k})$ $c = -4 \text{ WW} \rightarrow B2$
	(iii) Produce 2/3 equations containing <i>t,u</i> (& c)	M1		eg $3+t=2+3u,-8+3t=1+cu$ and $2t=3+u$
	Solve the 2 equations not containing 'c'	M1		
	t = 2, $u = 1Subst their (t,u) into equation containing c c = -3$	A1 M1 A1	5	
	Alternative method for final 4 marks Solve two equations, one with 'c', for t and u in terms of c , and substitute into third equation $c = -3$, ,		11
	U = U	(A2)		11

Mark Scheme 4725 June 2007

1	EITHER $a = 2$ $b = 2\sqrt{3},$ OR $a = 2 \qquad b = 2\sqrt{3}$	M1 A1 M1 A1 M1 M1 A1 A1	4	Use trig to find an expression for a (or b) Obtain correct answer Attempt to find other value Obtain correct answer a.e.f. (Allow 3.46) State 2 equations for a and b Attempt to solve these equations Obtain correct answers a.e.f. SR \pm scores A1 only
2	$(1^{3} =)\frac{1}{4} \times 1^{2} \times 2^{2}$ $\frac{1}{4}n^{2}(n+1)^{2} + (n+1)^{3}$ $\frac{1}{4}(n+1)^{2}(n+2)^{2}$	B1 M1 M1(indep) A1 A1	5	Show result true for <i>n</i> = 1 Add next term to given sum formula Attempt to factorise and simplify Correct expression obtained convincingly Specific statement of induction conclusion
			5	
3	$3\Sigma r^{2} - 3\Sigma r + \Sigma 1$ $3\Sigma r^{2} = \frac{1}{2}n(n+1)(2n+1)$ $3\Sigma r = \frac{3}{2}n(n+1)$ $\Sigma 1 = n$	M1 A1 A1 A1 M1		Consider the sum of three separate terms Correct formula stated Correct formula stated Correct term seen Attempt to simplify
	$\sum_{n^3} 1 = n$	A1	6	Obtain given answer correctly
			6	
4	(i) $\frac{1}{2}$ $\begin{pmatrix} 5 & -1 \\ -3 & 1 \end{pmatrix}$	B1 B1	2	Transpose leading diagonal and negate other diagonal or solve sim. eqns. to get 1 st column Divide by the determinant or solve 2 nd pair to get 2 nd column
	(ii) $\frac{1}{2} \begin{pmatrix} 2 & 0 \\ 23 & -5 \end{pmatrix}$	M1 M1(indep) A1ft A1ft	4 6	Attempt to use B ⁻¹ A ⁻¹ or find B Attempt at matrix multiplication One element correct, a.e.f, All elements correct, a.e.f. NB ft consistent with their (i)

5	0 1			
	(i) $\frac{1}{r(r+1)}$	B1	1	Show correct process to obtain given result
	(iii) $1 - \frac{1}{n+1}$ (iii) $S_{\infty} = 1$ $\frac{1}{n+1}$	M1 M1 A1 B1ft M1 A1 c.a.o.	3	Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter State correct value of sum to infinity Ft their (ii) Use sum to infinity – their (ii)
			3 7	Obtain correct answer a.e.f.
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ (b)	B1 B1	2	State correct values
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= 9 - 4 = 5$ (ii) (a) $\frac{3}{u^{3}} - \frac{9}{u^{2}} + \frac{6}{u} + 2 = 0$ $2u^{3} + 6u^{2} - 9u + 3 = 0$ (b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	M1 A1 ft M1 A1 A1 A1 A1 A1	2 2	State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer
			8	Required expression is related to new cubic stated or implied -(their "b" / their "a")

7		3.61	1	CI :
1	(i)	M1		Show correct expansion process
		M1		Show evaluation of a 2 x 2
	a(a - 12) + 32	A1	3	determinant
	(ii)			Obtain correct answer a.e.f.
	$\det \mathbf{M} = 12$	M1	2	
	non-singular	A1ft		Substitute $a = 2$ in their determinant
	(iii) EITHER	B1		
		M1		Obtain correct answer and state a
	OR			consistent conclusion
		A1	3	
		M1		$\det M = 0$ so non-unique solutions
		A1		
		A1		Attempt to solve and obtain 2
				inconsistent equations
				Deduce that there are no solutions
				Deduce that there are no solutions
				Substitute $a = 4$ and attempt to solve
				Obtain 2 correct inconsistent
				equations
			8	Deduce no solutions
0	(i) Circle control (2, 0)	D1D1	ð	
8	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	y-axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	Straight line,	B1		
	through $(1, 0)$ with +ve slope	B1		
	In 1 st quadrant only	B1		
	(ii) Inside circle, below line,	B2ft	6	Sketch showing correct region
	above <i>x</i> -axis		2	SR: B1ft for any 2 correct features
			8	

(i) $\begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$ (ii) Rotation (cen	B1	1	Correct matrix
(ii) Rotation (con			
(iii) Kotation (cen	tre O), 45° , clockwise B1E	B1B1 3	Sensible alternatives OK, must be a single transformation
	B1	1	Matrix multiplication or combination of transformations
(iv) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$		2	For at least two correct images For correct diagram
$(v) \det C = 2$	B1		State correct value
area of square	has been doubled B1	2	State correct relation a.e.f.
		9	
10 (i) $x^2 - y^2 = 16$ and	d xy = 15		Attempt to equate real and imaginary parts of $(x + iy)^2$ and $16+30i$
	A12	A1	Obtain each result
	M1		Eliminate to obtain a quadratic in x^2 or y^2
±(5 + 3i)	M1		Solve to obtain $x = (\pm) 5$ or $y = (\pm) 3$
(ii)	_ A1	6	Obtain correct answers as complex numbers
$z = 1 \pm \sqrt{16 + 30i}$	MI	*	Use quadratic formula or complete the square
6 + 3i, -4 - 3i	A1		a
		1dep 5	Simplify to this stage
	A1	A1ft	Use answers from (i) Obtain correct answers
		11	Obtain correct answers

Mark Scheme 4726 June 2007

1	Rew	rect formula with correct r rite as $a + b\cos 6\theta$ grate their expression correctly $\frac{1}{3}\pi$	M1 M1 A1√ A1	Allow $r^2 = 2 \sin^2 3\theta$ $a, b \neq 0$ From $a + b\cos 6\theta$ cao
2	(i)	Expand to $\sin 2x \cos^{1}/4\pi + \cos 2x \sin^{1}/4\pi$ Clearly replace $\cos^{1}/4\pi$, $\sin^{1}/4\pi$ to A.G.	B1 B1	
	(ii)	Attempt to expand $\cos 2x$ Attempt to expand $\sin 2x$ Get $\frac{1}{2}\sqrt{2}$ ($1 + 2x - 2x^2 - 4x^3/3$)	M1 M1 A1	Allow $1 - 2x^2/2$ Allow $2x - 2x^3/3$ Four correct unsimplified terms in any order; allow bracket; AEEF SR Reasonable attempt at $f''(0)$ for $n=0$ to 3 M1 Attempt to replace their values in Maclaurin M1 Get correct answer only A1
3	(i)	Express as $A/(x-1) + (Bx+C)/(x^2+9)$ Equate (x^2+9x) to $A(x^2+9) + (Bx+C)(x-1)$ Sub. for x or equate coeff. Get A=1, B=0,C=9 (ii) Get $A\ln(x-1)$	M1 A1	Allow <i>C</i> =0 here May imply above line; on their P.F. Must lead to at least 3 coeff.; allow cover-up method for <i>A</i> cao from correct method On their <i>A</i>
		Get $C/3 \tan^{-1}(x/3)$,	On their C ; condone no constant; ignore any $B \neq 0$
4	(i)	Reasonable attempt at product rule Derive or quote diff. of $\cos^{-1}x$ Get $-x^2(1-x^2)^{-\frac{1}{2}} + (1-x^2)^{\frac{1}{2}} + (1-x^2)^{-\frac{1}{2}}$ Tidy to $2(1-x^2)^{\frac{1}{2}}$	M1 M1 A1 A1	Two terms seen Allow + cao
	(ii)	Write down integral from (i) Use limits correctly Tidy to $\frac{1}{2}\pi$	B1 M1 A1	On any $k\sqrt{(1-x^2)}$ In any reasonable integral
			SR	Reasonable sub. B1 Replace for new variable and attempt to integrate (ignore limits) M1 Clearly get $\frac{1}{2}\pi$ A1

5	(i)	Attempt at parts on $\int 1 (\ln x)^n dx$ Get $x (\ln x)^n - \int_0^n (\ln x)^{n-1} dx$ Put in limits correctly in line above Clearly get A.G.	M1 A1 M1 A1	Two terms seen $ln e = 1$, $ln 1 = 0$ seen or implied
	(ii)	Attempt I_3 to I_2 as $I_3 = e - 3I_2$ Continue sequence in terms of In Attempt I_0 or I_1 Get $6 - 2e$	M1 A1 M1 A1	$I_2 = \text{e-}2I_1 \text{ and/or } I_1 = \text{e-}I_0$ $(I_0 = \text{e-}1, I_1 = 1)$ cao
6	(i)	Area under graph (= $\int 1/x^2 dx$, 1 to $n+1$) < Sum of rectangles (from 1 to n) Area of each rectangle = Width x Height = 1 x $1/x^2$	B1	Sum (total) seen or implied eg diagram; accept areas (of rectangles) Some evidence of area worked out – seen or implied
	(ii)	Indication of new set of rectangles Similarly, area under graph from 1 to <i>n</i> > sum of areas of rectangles from 2 to <i>n</i> Clear explanation of A.G.	B1 B1 B1	Sum (total) seen or implied Diagram; use of left-shift of previous areas
	(iii)	Show complete integrations of RHS, using correct, different limits Correct answer, using limits, to one integral Add 1 to their second integral to get complete series Clearly arrive at A.G.	M1 A1 M1 A1	Reasonable attempt at $\int x^{-2} dx$
	(iv)	Get one limit Get both 1 and 2	B1 B1	Quotable Quotable; limits only required

7	(i)	Use correct definition of cosh or sinh <i>x</i> Attempt to mult. their cosh/sinh Correctly mult. out and tidy Clearly arrive at A.G.	B1 M1 A1√ A1	Seen anywhere in (i) Accept e^{x-y} and e^{y-x}
	(ii)	Get $cosh(x - y) = 1$ Get or imply $(x - y) = 0$ to A.G.	M1 A1	
	(iii)	Use $\cosh^2 x = 9$ or $\sinh^2 x = 8$ Attempt to solve $\cosh x = 3$ (not -3) or $\sinh x = \pm \sqrt{8}$ (allow $+\sqrt{8}$ or $-\sqrt{8}$ only) Get at least one x solution correct Get both solutions correct, x and y	B1 M1 A1 A1	$x = \ln(3 + \sqrt{8})$ from formulae book or from basic cosh definition $x, y = \ln(3 \pm 2\sqrt{2})$; AEEF SR Attempt tanh = sinh/cosh B1 Get tanh $x = \pm \sqrt{8/3}$ (+ or -) M1 Get at least one sol. correct A1 Get both solutions correct A1 SR Use exponential definition B1 Get quadratic in e^x or e^{2x} M1 Solve for one correct x A1 Get both solutions, x and y A1
8	(i)	$x_2 = 0.1890$ $x_3 = 0.2087$ $x_4 = 0.2050$ $x_5 = 0.2057$ $x_6 = 0.2055$ $x_7 (= x_8) = 0.2056$ (to x_7 minimum) $\alpha = 0.2056$		From their x_1 (or any other correct) Get at least two others correct, all to a minimum of 4 d.p.
	(ii)	Attempt to diff. $f(x)$ Use α to show $f'(\alpha) \neq 0$		$k/(2+x)^3$ Clearly seen, or explain $k/(2+x)^3 \neq 0$ as $k \neq 0$; allow ± 0.1864 Translate $y=1/x^2$ M1 State/show $y=1/x^2$ has no TP A1
	(iii)	$\delta_3 = -0.0037 \text{ (allow } -0.004)$	В1√	Allow \pm , from their x_4 and x_3
	(iv)	Develop from δ_{10} = f '(α) δ_9 etc. to get δ_i or quote δ_{10} = δ_3 f '(α) ⁷ Use their δ_i and f '(α) Get 0.000000028	M1 M1 A1	Or any δ_i eg use $\delta_9 = x_{10} - x_9$ Or answer that rounds to \pm 0.00000003

9	(i)	Quote $x = a$	B1	
		Attempt to divide out	M1	Allow M1 for y=x here; allow
			A 1	(x-a) + k/(x-a) seen or implied
		Get y = x - a	A1	Must be equations
	(ii)	Attempt at quad. in x (=0)	M1	
		Use $b^{2} - 4ac \ge 0$ for real x	M1	Allow >
		$Get y^2 + 4a^2 \ge 0$	A 1	
		State/show their quad. is always >0	B1	Allow \geq
	(iii)		В1√	Two asymptotes from (i) (need not be labelled)
			B1	Both crossing points
			B1√	Approaches – correct shape
			SR	Attempt diff. by quotient/product
			rule	M1
				quadratic in x for $dy/dx = 0$
			and 1	$note b^2 - 4ac < 0 $ A1

Consider horizontal asymptotes B1

B1

Fully justify answer

Mark Scheme 4727 June 2007

1	(i) $zz^* = re^{i\theta}.re^{-i\theta} = r^2 = z ^2$	B1 1	For verifying result AG
	(ii) Circle	B1	For stating circle
	Centre $0 (+0i) OR (0, 0) OR O$, radius 3	B1_2	For stating correct centre and radius
		3	
2	EITHER: $(\mathbf{r} =) [3+t, 1+4t, -2+2t]$	M1	For parametric form of <i>l</i> seen or implied
	8(3+t) - 7(1+4t) + 10(-2+2t) = 7	M1 A1	For substituting into plane equation
	\Rightarrow (0t) + (-3) = 7 \Rightarrow contradiction	A1	For obtaining a contradiction
	l is parallel to Π , no intersection	B1 5	For conclusion from correct working
	$OR: [1, 4, 2] \cdot [8, -7, 10] = 0$	M1	For finding scalar product of direction vectors
	$\Rightarrow l$ is parallel to Π	A1	For correct conclusion
	$(3, 1, -2)$ into Π	M1	For substituting point into plane equation
	$\Rightarrow 24 - 7 - 20 \neq 7$	A1	For obtaining a contradiction
	l is parallel to Π , no intersection	B1	For conclusion from correct working
O	R:Solve $\frac{x-3}{1} = \frac{y-1}{4} = \frac{z+2}{2}$ and $8x - 7y + 10z = 7$		
	eg $y-2z=3$, $2y-2=4z+8$	M1 A1	For eliminating one variable
		M1	For eliminating another variable
	eg $4z + 4 = 4z + 8$	A1	For obtaining a contradiction
	l is parallel to Π , no intersection	B1	For conclusion from correct working
		5	
3	Aux. equation $m^2 - 6m + 8 = 0$	M1	For auxiliary equation seen
	m=2,4	A1	For correct roots
	$CF (y =) Ae^{2x} + Be^{4x}$	A1√	For correct CF. f.t. from their <i>m</i>
	$PI(y =) Ce^{3x}$	M1	For stating and substituting PI of correct form
	$9C - 18C + 8C = 1 \Rightarrow C = -1$	A1	For correct value of C
	GS $y = Ae^{2x} + Be^{4x} - e^{3x}$	B1√ 6	For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI
		6	

4 (i) $q(st) = qp = s$	B1		For obtaining s
(qs)t = tt = s	B1	2	For obtaining s
(ii) METHOD 1			
Closed: see table	B1		For stating closure with reason
Identity = r	B1		For stating identity <i>r</i>
Inverses: $p^{-1} = s$, $q^{-1} = t$, $(r^{-1} = r)$,	M1		For checking for inverses
$s^{-1} = p, \ t^{-1} = q$	A1	4	For stating inverses <i>OR</i> For giving sufficient explanation to justify each element has an inverse eg <i>r</i> occurs once in each row and/or column
METHOD 2			
Identity = r	B1		For stating identity <i>r</i>
	M1		For attempting to establish a generator $\neq r$
eg $p^2 = t$, $p^3 = q$, $p^4 = s$	A1		For showing powers of $p(OR q, s \text{ or } t)$ are different elements of the set
$\Rightarrow p^5 = r$, so p is a generator	A1		For concluding $p^5(ORq^5, s^5 \text{ or } t^5) = r$
(iii) e, d, d^2, d^3, d^4	B2	2	For stating all elements AEF eg d^{-1} , d^{-2} , dd
	8		

5 (i) $(\cos 6\theta =) \text{Re}(c + is)^6$	M1	For expanding (real part of) $(c+is)^6$ at least 4 terms and 1 evaluated binomial coefficient needed
$(\cos 6\theta =) c^6 - 15c^4s^2 + 15c^2s^4 - s^6$	A1	For correct expansion
$(\cos 6\theta =)$ $c^{6} - 15c^{4} (1 - c^{2}) + 15c^{2} (1 - c^{2})^{2} - (1 - c^{2})^{3}$	M1	For using $s^2 = 1 - c^2$
$(\cos 6\theta =) 32c^6 - 48c^4 + 18c^2 - 1$	A1 4	For correct result AG
(ii) $64x^6 - 96x^4 + 36x^2 - 3 = 0 \Rightarrow \cos 6\theta = \frac{1}{2}$	M1	For obtaining a numerical value of cos 6θ
$\Rightarrow (\theta =) \frac{1}{18} \pi, \frac{5}{18} \pi, \frac{7}{18} \pi \text{ etc.}$	A1	For any correct solution of $\cos 6\theta = \frac{1}{2}$
$\cos 6\theta = \frac{1}{2}$ has multiple roots	M1	For stating or implying at least 2 values of θ
largest x requires smallest θ	A1 4	For identifying $\cos \frac{1}{18} \pi$ AEF as the largest positive root
\Rightarrow largest positive root is $\cos \frac{1}{18}\pi$		from a list of 3 positive roots OR from general solution OR from consideration of the cosine function
	8	

6 (i) $\mathbf{n} = \frac{1}{4} \times \frac{1}{2}$ $\mathbf{n} = [2, -1, 1] \times [4, 3, 2]$ $\mathbf{n} = k[-1, 0, 2]$ $\mathbf{n} = k[-1, 0, 2] = -5k$ (ii) $[3, 4, -1], k[-1, 0, 2] = -5k$ (iii) $[5, 1, 1], k[-1, 0, 2] = -3k$ $\mathbf{n} = \frac{1}{4} \times \frac{1}{4}$ (iii) $[-1, 1] \times [-1, 0, 2] = -3k$ (iii) $[-1, 1] \times [-1, 0, 2] = -3k$ (iii) $[-1, 1] \times [-1, 0, 2] = -3k$ (iii) $[-1, 1] \times [-1, 0, 2] = -3k$ (iii) $[-1, 1] \times [-1, 0, 2] = -3k$ (iii) $[-1, 1] \times [-1, 0, 2] = -3k$ (iii) $[-1, 1] \times [-1, 0, 2] = -3k$ (iv) $[-1, 1] \times [-1, 0$		1	F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 (i) $\mathbf{n} = l_1 \times l_2$	B1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{n} = [2, -1, 1] \times [4, 3, 2]$	M1*	_
$ \begin{aligned} \mathbf{r}.\{-1,0,2\} &= -5 & \text{Al 5} \\ \textbf{(ii)} [5,1,1], k[-1,0,2] &= -3k & \text{M1} \\ \mathbf{r}.\{-1,0,2] &= -3 & \text{M1} \\ \textbf{(iii)} d &= \frac{ -5+3 }{\sqrt{5}} OR \ d &= \frac{ [2,-3,2],[-1,0,2] }{\sqrt{5}} \\ OR \ d \ from \ (3,1,1) \ to \ \Pi_1 &= \frac{ 5(-1)+1(0)-1(2)+3 }{\sqrt{5}} \\ OR \ d \ from \ (3,4,-1) \ to \ \Pi_2 &= \frac{ 5(-1)+1(0)-1(2)+3 }{\sqrt{5}} \\ OR \ [3-t,4,-1+2t],[-1,0,2] &= -5 \Rightarrow t &= -\frac{2}{5} \\ d \ -\frac{2}{\sqrt{5}} &= \frac{2\sqrt{5}}{5} &= 0.894427 \\ \textbf{(iv)} \ d \ is the shortest \ OR \ perpendicular \ distance \ between \ I_1 \ and \ I_2 \\ &= z^2 - (2\cos\phi)z + 1 \end{aligned} \qquad \begin{aligned} &\text{B1} \ 1 \\ &\text{for } \ k = 0,1,2,3,4,5,6 \ OR \ 0,\pm 1,\pm 2,\pm 3 \end{aligned} \qquad \begin{aligned} &\text{B1} \ 1 \\ &\text{For using a distance formula from their equations} \end{aligned} $	$\mathbf{n} = k[-1, 0, 2]$	A1	For correct vector (any <i>k</i>)
$ \begin{aligned} \mathbf{r}. & [-1,0,2] = -5 \\ & (\mathbf{ii}) [\mathbf{j},1,1] \cdot k [-1,0,2] = -3k \\ & \mathbf{r}. [-1,0,2] = -3 \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} \\ \mathbf{r}. [-1,0,2] = -3 \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} \\ \mathbf{r}. [-1,0,2] = -3 \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} \\ \mathbf{I} & \mathbf{J} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{I} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \cdot \mathbf{J} \\ \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned} $ $ \begin{aligned} \mathbf{M} & \mathbf{I} & \mathbf{J} \cdot \mathbf{J} \end{aligned} \end{aligned}$	$[3, 4, -1] \cdot k[-1, 0, 2] = -5k$		For substituting a point of l_1 into r.n
$ \begin{array}{c} \mathbf{r}. \{ -1, 0, 2 \} = -3 \\ \hline \\ (iii) \ d = \frac{ -5+3 }{\sqrt{5}} \ OR \ d = \frac{ [2,-3,2].[-1,0,2] }{\sqrt{5}} \\ \hline \\ OR \ d \ from \ (5,1,1) \ to \ \Pi_1 = \frac{ 5(-1)+1(0)+1(2)+5 }{\sqrt{5}} \\ \hline \\ OR \ d \ from \ (3,4,-1) \ to \ \Pi_2 = \frac{ 3(-1)+4(0)-1(2)+5 }{\sqrt{5}} \\ \hline \\ OR \ (5,-1,1+2t).[-1,0,2] = -3 \Rightarrow t = \frac{2}{3} \\ \hline \\ OR \ [5-t,1,1+2t].[-1,0,2] = -5 \Rightarrow t = -\frac{2}{5} \\ \hline \\ d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427 \\ \hline \\ (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ between \ I_1 \ and \ I_2 \\ \hline \\ \hline \\ (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ between \ I_1 \ and \ I_2 \\ \hline \\ $	$\mathbf{r} \cdot [-1, 0, 2] = -5$		For obtaining correct p. AEF in this form
	(ii) $[5, 1, 1] \cdot k[-1, 0, 2] = -3k$	M1	For using same n and substituting a point of l_2
$OR \ d \ from \ (5,1,1) \ to \ \Pi_1 = \frac{ 5(-1)+1(0)+1(2)+5 }{\sqrt{5}}$ $OR \ d \ from \ (3,4,-1) \ to \ \Pi_2 = \frac{ 3(-1)+4(0)-1(2)+3 }{\sqrt{5}}$ $OR \ [3-t,4,-1+2t], [-1,0,2] = -3 \Rightarrow t = \frac{2}{5}$ $OR \ [5-t,1,1+2t], [-1,0,2] = -5 \Rightarrow t = -\frac{2}{5}$ $d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427$ $A1\sqrt{2} from \ correct \ distance \ AEF \ f.t. \ on incorrect \ n$ $e the tween \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the shortest \ OR \ perpendicular \ distance \ between \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the shortest \ OR \ perpendicular \ distance \ between \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ between \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ between \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ between \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ between \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ between \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ between \ t_1 \ and \ t_2$ $T (iv) \ d \ is \ the \ shortest \ OR \ perpendicular \ distance \ he \ to \ in \ to \ t$	$\mathbf{r} \cdot [-1, 0, 2] = -3$	A1√ 2	
$OR \ d \ from \ (3,4,-1) \ to \ \Pi_2 = \frac{ 3(-1)+4(0)-1(2)+3 }{\sqrt{5}}$ $OR \ [3-t,4,-1+2t] \ . [-1,0,2] = -3 \Rightarrow t = \frac{2}{5}$ $OR \ [5-t,1,1+2t] \ . [-1,0,2] = -5 \Rightarrow t = -\frac{2}{5}$ $d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427$ $A1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$, · · · · · · · · · · · · · · · · · · ·	M1	
$OR \ [3-t,4,-1+2t]. [-1,0,2] = -3 \Rightarrow t = \frac{2}{5}$ $OR \ [5-t,1,1+2t]. [-1,0,2] = -5 \Rightarrow t = -\frac{2}{5}$ $d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427$ (iv) d is the shortest OR perpendicular distance between I_1 and I_2 $= z^2 - (2)z = \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$ $= z^2 - (2\cos\phi)z + 1$ B1 1 For correct justification AG $B1 1 = For cherrect justification AG For other roots specified AG (AG may be seen in any form, eg 1, e^0, e^{2\pi i}) For answers in form \cos\theta + i\sin\theta allow maximum B1 B0 B1 For using linear factors from (ii), seen or implied (iii) (z^7 - 1 =)(z - 1)(z - e^{\frac{3}{2}\pi i})(z - e^{-\frac{3}{2}\pi i})(z - e$	OR d from $(5, 1, 1)$ to $\Pi_1 = \frac{ 5(-1) + 1(0) + 1(2) + 5 }{\sqrt{5}}$		
$OR \ [5-t, 1, 1+2t] \cdot [-1, 0, 2] = -5 \Rightarrow t = -\frac{2}{5}$ $d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427$ (iv) d is the shortest OR perpendicular distance between I_1 and I_2 $T \ (i) \ (z - e^{i\phi})(z - e^{-i\phi}) = z^2 - (2)z\frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$ $= z^2 - (2\cos\phi)z + 1$ B1	OR d from $(3, 4, -1)$ to $\Pi_2 = \frac{ 3(-1) + 4(0) - 1(2) + 3 }{\sqrt{5}}$		
$d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427$ (iv) d is the shortest DR perpendicular distance between l_1 and l_2 $7 (i) (z - e^{i\phi})(z - e^{-i\phi}) = z^2 - (2)z - \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$ $= z^2 - (2\cos\phi)z + 1$ B1 1 For correct statement B1 1 For correct justification AG B1 1 For correct justification AG B1 1 For original form DR any one non-real root For other roots specified $(k=0 \text{ may be seen in any form, eg } 1, e^0, e^{2\pi i})$ For answers in form $\cos\theta + i\sin\theta$ allow maximum B1 B0 B1 For any 7 points equally spaced round unit circle (circumference need not be shown) B1 4 For any 7 points equally spaced round unit circle (circumference need not be shown) B1 4 For using linear factors from (ii), seen or implied ($z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})$ $= (z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})$ $= (z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})$ $= (z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})(z - e^{\frac{i}{2}\pi i})$ $= (z^2 - (2\cos\frac{i}{2}\pi)z + 1) \times (z$	$OR[3-t, 4, -1+2t] \cdot [-1, 0, 2] = -3 \implies t = \frac{2}{5}$		
(iv) d is the shortest ∂R perpendicular distance between l_1 and l_2	$OR [5-t, 1, 1+2t] \cdot [-1, 0, 2] = -5 \Rightarrow t = -\frac{2}{5}$		$\Pi_{ m l}$
between l_1 and l_2	V3 3	A1√ 2	
		B1 1	For correct statement
$ \begin{array}{c} = z^2 - (2\cos\phi)z + 1 \\ \\ \textbf{(ii)} \ z = e^{\frac{2}{7}k\pi i} \\ \text{for } k = 0, 1, 2, 3, 4, 5, 6 \ OR \ 0, \pm 1, \pm 2, \pm 3 \\ \\ \textbf{B1} \\ \\ \textbf{For any Points equally spaced round unit circle (circumference need not be shown)} \\ \textbf{B1} \ \textbf{4} \\ \textbf{For any Points equally spaced round unit circle (circumference need not be shown)} \\ \textbf{B1} \ \textbf{4} \\ \textbf{50} \ \textbf{50} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10} \\ \textbf{10} \ \textbf{10}$	1 444 12	10	
(ii) $z = e^{\frac{2}{7}k\pi i}$ for $k = 0, 1, 2, 3, 4, 5, 6$ OR $0, \pm 1, \pm 2, \pm 3$ B1 For general form OR any one non-real root For other roots specified ($k = 0$ may be seen in any form, eg 1, e^0 , $e^{2\pi i}$) For answers in form $\cos \theta + i \sin \theta$ allow maximum B1 B0 B1 For any 7 points equally spaced round unit circle (circumference need not be shown) For 1 point on $+^{ve}$ real axis, and other points in correct quadrants $(iii) \left(z^7 - 1 = \right) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ For using linear factors from (ii), seen or implied For identifying at least one pair of complex conjugate factors $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ For identifying at least one pair of complex conjugate factors For linear factor seen For any one quadratic factor seen For the other 2 quadratic factors and expression written as product of 4 factors	7 (i) $(z - e^{i\phi})(z - e^{-i\phi}) \equiv z^2 - (2)z \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$	B1 1	For correct justification AG
For other roots specified $(k=0 \text{ may be seen in any form, eg } 1, e^0, e^{2\pi i})$ For answers in form $\cos \theta + i \sin \theta$ allow maximum B1 B0 B1 For any 7 points equally spaced round unit circle (circumference need not be shown) For 1 point on $+^{ve}$ real axis, and other points in correct quadrants $(iii) \left(z^7 - 1 = \right) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z$	1 11		
For other roots specified $(k=0 \text{ may be seen in any form, eg } 1, e^0, e^{2\pi i})$ For answers in form $\cos \theta + i \sin \theta$ allow maximum B1 B0 B1 For any 7 points equally spaced round unit circle (circumference need not be shown) For 1 point on $+^{ve}$ real axis, and other points in correct quadrants $(iii) \left(z^7 - 1 = \right) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{6}{7}\pi i})(z$	(ii) $z = e^{\frac{2}{7}k\pi i}$	B1	For general form OR any one non-real root
$(k=0 \text{ may be seen in any form, eg } 1, e^0, e^{2\pi t})$ For answers in form $\cos \theta + i \sin \theta$ allow maximum B1 B0 B1 For any 7 points equally spaced round unit circle (circumference need not be shown) For 1 point on $+^{\text{ve}}$ real axis, and other points in correct quadrants $(iii) \left(z^7 - 1 = \right) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{7}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{7}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{7}{7}\pi i}) \times (z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{7}{7}\pi i})(z - e^{-\frac{7}{7}\pi i}) \times (z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{7}{7}\pi i})(z - e^{-\frac{7}{7}\pi i}) \times (z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ For identifying at least one pair of complex conjugate factors $(z^2 - (2\cos\frac{7}{7}\pi)z + 1) \times (z^2 - (2\cos\frac{6}{7}\pi)z + 1) \times (z^2 - (2\cos\frac{6}{$		B1	l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			($k=0$ may be seen in any form, eg 1, e^0 , $e^{2\pi i}$)
B1 For any 7 points equally spaced round unit circle (circumference need not be shown) B1 4 For 1 point on $+^{\text{ve}}$ real axis, and other points in correct quadrants $(iii) \left(z^7 - 1 = \right) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{2}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})$ $= (z - e^{\frac{2}{7}\pi i})(z - e^{\frac{2}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i}) \times (z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})(z - e^{\frac$			
and other points in correct quadrants $(\mathbf{iii}) \left(z^7 - 1 = \right) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-2}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-6}{7}\pi i})$ $= (z - e^{\frac{2}{7}\pi i})(z - e^{\frac{-2}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-6}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-6}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-6}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-6}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-4}$	1re	B1	
$(z-e^{\frac{6}{7}\pi i})(z-e^{\frac{-2}{7}\pi i})(z-e^{\frac{-4}{7}\pi i})(z-e^{\frac{-6}{7}\pi i})$ $=(z-e^{\frac{2}{7}\pi i})(z-e^{\frac{-2}{7}\pi i})\times(z-e^{\frac{4}{7}\pi i})(z-e^{\frac{-4}{7}\pi i})$ $=(z-e^{\frac{2}{7}\pi i})(z-e^{\frac{-2}{7}\pi i})\times(z-e^{\frac{4}{7}\pi i})$ $(z-e^{\frac{6}{7}\pi i})(z-e^{\frac{-6}{7}\pi i})\times$ $(z-e^{\frac{6}{7}\pi i})(z-e^{\frac{-6}{7}\pi i})\times$ $\times(z-1)$ $=(z^2-(2\cos\frac{2}{7}\pi)z+1)\times$ $(z^2-(2\cos\frac{2}{7}\pi)z+1)\times(z^2-(2\cos\frac{6}{7}\pi)z+1)\times$ $\times(z-1)$ A1 For identifying at least one pair of complex conjugate factors For linear factor seen A1 For any one quadratic factor seen A1 For the other 2 quadratic factors and expression written as product of 4 factors		B1 4	
$=(z-e^{\frac{2}{7}\pi i})(z-e^{\frac{-2}{7}\pi i})\times(z-e^{\frac{4}{7}\pi i})(z-e^{\frac{-4}{7}\pi i})$ $(z-e^{\frac{6}{7}\pi i})(z-e^{\frac{-6}{7}\pi i})\times$ $\times(z-1)$ $=(z^2-(2\cos\frac{2}{7}\pi)z+1)\times$ $(z^2-(2\cos\frac{4}{7}\pi)z+1)\times(z^2-(2\cos\frac{6}{7}\pi)z+1)\times$ $\times(z-1)$ M1 For identifying at least one pair of complex conjugate factors For linear factor seen A1 For any one quadratic factors and expression written as product of 4 factors	,	M1	For using linear factors from (ii), seen or implied
$(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-6}{7}\pi i}) \times $ $\times (z - 1)$ $= (z^2 - (2\cos{\frac{2}{7}}\pi)z + 1) \times $ $(z^2 - (2\cos{\frac{4}{7}}\pi)z + 1) \times (z^2 - (2\cos{\frac{6}{7}}\pi)z + 1) \times $ $\times (z - 1)$ B1 For identifying at least one pair of complex conjugate factors For linear factor seen A1 For the other 2 quadratic factors and expression written as product of 4 factors			
$= (z^2 - (2\cos\frac{2}{7}\pi)z + 1) \times$ $(z^2 - (2\cos\frac{4}{7}\pi)z + 1) \times (z^2 - (2\cos\frac{6}{7}\pi)z + 1) \times$ $\times (z - 1)$ A1 For any one quadratic factor seen A1 5 For the other 2 quadratic factors and expression written as product of 4 factors		M1	
$(z^2 - (2\cos\frac{4}{7}\pi)z + 1) \times (z^2 - (2\cos\frac{6}{7}\pi)z + 1) \times $ $\times (z - 1)$ A1 5 For the other 2 quadratic factors and expression written as product of 4 factors	×(z-1)	B1	For linear factor seen
$\times (z-1)$ written as product of 4 factors	$=(z^2-(2\cos\frac{2}{7}\pi)z+1)\times$	A1	For any one quadratic factor seen
	, ,	A1 5	
	()	10	

8 (i) Integrating factor $e^{\int \tan x (dx)}$	B1	For correct IF
$=e^{-\ln\cos x}$	M1	For integrating to ln form
$= (\cos x)^{-1} OR \sec x$	A1	For correct simplified IF AEF
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y(\cos x)^{-1} \right) = \cos^2 x$	В1√	For $\frac{d}{dx}(y)$. their IF = $\cos^3 x$. their IF
$y(\cos x)^{-1} = \int \frac{1}{2} (1 + \cos 2x) (dx)$	M1 M1	For integrating LHS For attempting to use $\cos 2x$ formula <i>OR</i> parts for $\int \cos^2 x dx$
$y(\cos x)^{-1} = \frac{1}{2}x + \frac{1}{4}\sin 2x \ (+c)$	A1	For correct integration both sides AEF
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x + c\right)\cos x$	A1 8	For correct general solution AEF
(ii) $2 = \left(\frac{1}{2}\pi + c\right) \cdot -1 \Rightarrow c = -2 - \frac{1}{2}\pi$	M1	For substituting $(\pi, 2)$ into their GS and solve for c
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x - 2 - \frac{1}{2}\pi\right)\cos x$	A1 2	For correct solution AEF
	10	
9 (i) $3^n \times 3^m = 3^{n+m}, n+m \in \mathbb{Z}$	B1	For showing closure
$\left(3^{p} \times 3^{q}\right) \times 3^{r} = \left(3^{p+q}\right) \times 3^{r} = 3^{p+q+r}$	M1	For considering 3 distinct elements, seen bracketed 2+1 or 1+2
$=3^p \times (3^{q+r}) = 3^p \times (3^q \times 3^r) \Rightarrow$ associativity	A1	For correct justification of associativity
Identity is 3 ⁰	B1	For stating identity. Allow 1
Inverse is 3^{-n}	B1	For stating inverse
$3^n \times 3^m = 3^{n+m} = 3^{m+n} = 3^m \times 3^n \Rightarrow \text{commutativity}$	B1 6	For showing commutativity
(ii) (a) $3^{2n} \times 3^{2m} = 3^{2n+2m} \left(= 3^{2(n+m)} \right)$	B1*	For showing closure
Identity, inverse OK	B1 (*dep) 2	For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n} ,	M1	For considering inverse
-n ∉ subset	A1 2	For justification of not being a subgroup
		3^{-n} must be seen here or in (i)
(c) EITHER: eg $3^{1^2} \times 3^{2^2} = 3^5$	M1	For attempting to find a specific counter-example of closure
$\neq 3^{r^2} \Rightarrow \text{ not a subgroup}$	A1 2	For a correct counter-example and statement that it is not a subgroup
$OR: 3^{n^2} \times 3^{m^2} = 3^{n^2 + m^2}$	M1	For considering closure in general
$\neq 3^{r^2} \text{ eg } 1^2 + 2^2 = 5 \implies \text{not a subgroup}$	A1	For explaining why $n^2 + m^2 \neq r^2$ in general and statement that it is not a subgroup
	12	

Mark Scheme 4728 June 2007

1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
	Y = 12	B1	No evidence for which value is X or Y available from (ii)
			award B1 for the pair of values 5 and 12 irrespective of
		[2]	order
(ii)	$R^2 = 5^2 + 12^2$		For using $R^2 = X^2 + Y^2$
(11)		M1	
	Magnitude is 13 N	A1	Allow 13 from X=-5
	$\tan \theta = 12/5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	A1	SR: p=14.9 and Q=11.4 giving R=13+/-0.1 B2,
		[4]	Angle = $67.5 + /-0.5 B2$
2(i)	$250 + \frac{1}{2}(290 - 250)$	M1	Use of the ratio 12:12 (may be implied), or $v = u+at$
-(1)	200 /2 (200 200)	1,11	cov or the ratio 12:12 (may ov imphou), or viva av
	t = 270	A1	
	1 270	[2]	
(;;)			The idea that are assumed displacement
(ii)	1/ 4012 + 21012 + 1/2012	M1	The idea that area represents displacement
	½ x40x12+210x12+½x20x12-	M1	Correct structure, ie triangle1 + rectangle2 + triangle3 -
	½x20x12 or ½ x40x12+210x12		triangle4 with triangle3 = triangle4 , triangle1 +
	or $\frac{1}{2}$ x(210+250)x12etc		rectangle2, trapezium1&2, etc
	Displacement is 2760m	A1	
		[3]	
(iii)	appropriate structure, ie triangle +	M1	All terms positive
	rectangle + triangle + triangle ,		
	triangle + rectangle + 2triangle, etc		
	Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
	Distance is 5000m	[2]	as a mis-read.
		[2]	us u mis reau.
3(i)		M1	An equation with R, T and 50 in linear combination.
3(1)	$D + T_{ain} 72^{0} - 50^{\circ}$		
	$R + T\sin 72^{\circ} = 50g$	A1	R + 0.951T = 50g
		[2]	
(ii)	$T = 50g/\sin 72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^{\circ} = 50(g)$
	T = 515 (AG)	A1	Or better
	T = mg	B1	
	m = 52.6	B1	Accept 52.5
		[4]	
(iii)	$X = T\cos 72^{\circ}$	B1	Implied by correct
			answer
	X = 159	B1	Or better
		[2]	
1			
4(i)	In Q4 right to left may be used as the	M1	For using Momentum 'before' is zero
.(1)	positive sense throughout.		
	$0.18 \times 2 - 3m = 0$	A1	
	$0.18 \times 2 - 311 - 0$ m = 0.12		
	$\Pi = 0.12$	A1	2 mortes possible if a included associated by
	Mamanhama a Cari	[3]	3 marks possible if g included consistently
(iia)	Momentum after	B1	
	$= -0.18 \times 1.5 + 1.5 \text{m}$		
	$0.18 \times 2 - 3m = -0.18 \times 1.5 + 1.5m$	M1	For using conservation of momentum
	m = 0.14	A 1	
		[3]	3 marks possible if g included consistently
(iib)	$0.18 \times 2 - 3m$	B1ft	ft wrong momentum 'before'
` ´	= (0.18 + m)1.5		-
	m = 0.02	B1	
	$0.18 \times 2 - 3m = -(0.18 + m)1.5$	B1ft	
	m = 0.42	B1	
	V. 12	[4]	0 marks if a included
		[4]	0 marks if g included

5(i)		M1	Using $v^2 = u^2 + /- 2gs$ with $v = 0$ or $u = 0$
	$8.4^2 - 2gs_{max} = 0$	A 1	
	Height is 3.6m (AG)	A1	
		[3]	
(ii)		M1	Using $u^2 = +/- 2g(ans(i) - 2)$
	u = 5.6	A 1	
		[2]	
(iii)	EITHER (time when at same height)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, expressions for
,	,		s terms must differ
	$s+/-2 = 8.4t - \frac{1}{2} gt^2$ and		Or 8.4t $(-\frac{1}{2} gt^2)=5.6t (-\frac{1}{2} gt^2)+/-2$
	$(s+/-2) = 5.6t - \frac{1}{2}gt^2$	A 1	Correct sign for g, $cv(5.6)$, $\pm/-2$ in only one equation
	t = 5/7 (0.714)	A1	cao
	(01, 2, 1)	M1	Using $v = u + at$ for P and for Q, $a = +/-g$, $cv(t)$
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$	A1	Correct sign for g, cv(5.6), candidates answer for t (including
	v _r o o., r.g w v _Q o o., r.g		sign)
	$v_P = 1.4 \text{ and } v_O = -1.4$	A1	cao
	77 1.1 and 70 1.1	[6]	Cuo
	OR (time when at same speed in	[o]	
	opposite directions)	M1	Using $v = u+at$ for P and for Q, $a = +/-g$
	v = 8.4 -gt and $-v = 5.6$ -gt	A1	Correct sign for g, $cv(5.6)$
	$v = 1.4 $ {or $t = 5/7 (0.714)$ }	A1	Only one correct answer is needed
	$V = 1.4 \{01 \ t = 3/7 \ (0.714)\}$	AI	Only one correct answer is needed
	(with $v = 1.4$)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(v)$
	$1.4^2 = 8.4^2 - 2gs_P$ and		2 2 2
	$(-1.4)^2 = 5.6^2 - 2gs_0$	A1	Correct sign for g, cv(5.6), candidate's answer for v (including
	() E (- for Q)
	$s_P = 3.5 \text{ and } s_O = 1.5$	A1	cao
	$\{(\text{with t=}5/7)\}$		
		M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, $cv(t)$
	$s = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and		
	$s = 5.6 \times 0.714 - \frac{1}{2} g \times 0.714^2$	A 1	Correct sign for g, cv(5.6), candidate's answer for t
	Č		(including sign of t if negative)
	$s_P = 3.5$ and $s_Q = 1.5$	A1	cao}
	-1		,
	OR (motion related to greatest height		
	and verification)	M1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	0 = 8.4 -gt and $0 = 5.6 -gt$		
	t = 6/7 and t = 4/7	A1	Both values correct
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$		mid-interval t $(6/7+4/7)/2 = 0.714$
	$\{0 = v_P - g/7 \text{ and } v_O = 0 + g/7\}$		{Or semi-interval = $6/7-4/7$ }/2=1/7}
	$v_P = 1.4 \text{ and } v_O = -1.4$	A1	cao
	$s_P = 8.4 \times 0.714 - \frac{1}{2} \text{ gx} \cdot 0.714^2$ and	M1	$s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g,
	$s_0 = 5.6 \times 0.714 - \frac{1}{2} \text{ gx} \cdot 0.714^2$		cv(5.6) and $cv(t)$
	$\{ s_P = 0/7 - \frac{1}{2}(-g)x(1/7)^2 \text{ and } \}$		$\{s = vt - \frac{1}{2} at^2 \text{ for P } and s = ut + \frac{1}{2} at^2 \text{ for } Q\}$
	$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2$	A1	(
	$s_P = 3.5 \ s_O = 1.5$		
	$\{ s_P = 0.1 \ s_Q = 0.1 \}$	A1	cao
	(-1 0.2 5Q 0.2)		continued
			Converved

5(iii)	OR (without finding exactly where or		
	when)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(5.6)$,
	2		different expressions for s.
cont	${v_P}^2 = 8.4^2 - 2g(s+/-2)$ and		Correct sign for g, $cv(5.6)$, $(s+/-2)$ used only once
	2 2		cao. Verbal explanation essential
	$v_Q^2 = 5.6^2 - 2g[(s+/-2)]$ $v_P^2 = v_Q^2$ for all values of s so that	A1	Using $v = u+at t$ for P and for Q, $a = +/-g$
			Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the		cv(5.6)
	same heights.	A1	
		M1	
	0 = 8.4 - gt and $0 = 5.6 - gt$	A1	
	$t_P = 6/7$ and $t_O = 4/7$ means there is a		
	time interval when Q has started to		cao. Verbal explanation essential
	descend but P is still rising, and there		•
	will be a position where they have the		
	same height but are moving in		
	opposite directions.	A1	

6(i)		M1	For differentiating s
	$v = 0.004t^3 - 0.12t^2 + 1.2t$	A1	Condone the inclusion of +c
	$v(10) = 4 - 12 + 12 = 4 \text{ms}^{-1}$ (AG)	A 1	Correct formula for v (no +c) and t=10
L		[3]	stated sufficient
(ii)		M1	For integrating a
	$v = 0.8t - 0.04t^2 + (+C)$	A 1	
	8 - 4 + C = 4	M1*	Only for using $v(10) = 4$ to find C
	$v = 0.8x20 - 0.04x20^2 (+C)$	M1	
	v(20) = 16 - 16 = 0 (AG)	DA1	Dependant on M1*
		[5]	
(iii)		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3 (+K)$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be
			linear)
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \implies K = 10/3$	A 1	Not if S includes ct
			term
	S(20) = 160 - 320/3 + 10/3 = 56.7m	B1	Accept 56.6 to 56.7, Adding 30 subsequently is not isw,
	OR	[6]	hence B0
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
		M1	Using limits of 10 and 20 (limits 0, 10 M0A0B0)
	S(20) - S(10) = 26.6, 26.7	A 1	For $53.3 - 26.7$ or better (Note $S(10) = 26.7$ is
			fortuitously correct M0A0B0)
	displacement is 56.7m	B1	Accept 56.6 to 56.7

7(i)	$R = 1.5g\cos 21^{\circ}$	B1	
		M1	For using $F = \mu R$
	Frictional force is 10.98N	A1	Note 1.2gcos21=10.98 fortuitously, B0M0A0
	(AG)	[3]	3, 3
(ii)		M1	For obtaining an N2L equation relating to the block in which F,
			T, m and a are in linear combination or
			For obtaining an N2L equation relating to the object in which
			T, m and a are in linear combination
	$T + 1.5gsin21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerical
			value for a letter (excluding g), excess terms. Minimise error
			count.
(iii)	T - 1.5a = 5.71	M1	For solving the simultaneous equations in T and a for a.
	and $1.2a + T = 11.76$		
	$a = 2.24 \tag{AG}$	A1	Evidence of solving needed
		[2]	
(iva)	$v^2 = 2 \times 2.24 \times 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A1	Accept 3
		[2]	
(ivb)		M1	For using $T = 0$ to find a
	a = -3.81	A1	
	$v^2 = 2.99^2 + 2 \times (-3.81) \times 0.8$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any
			value for a
	Speed of the block is 1.69ms ⁻¹	A1	Accept art 1.7 from correct work
		[4]	

Mark Scheme 4729 June 2007

1	40 cos35°	B1			
	$WD = 40\cos 35^{\circ} \times 100$	M1			
	3280 J	A1 3	ignore units	3	
		•			
2	$0 = 12\sin 27^{\circ}t - 4.9t^{2} \text{ any correct.}$	M1	$\mathbf{or} \ \mathbf{R} = \mathbf{u}^2 \sin 2\theta / \mathbf{g} \ \ (\mathbf{B2})$		
	t = 1.11method for total time	A1	correct formula only		
	$R = 12\cos 27^{\circ} \times t$	M1	12^2 x sin54° / 9.8 sub in values		
	11.9	A1 4	11.9	4	
3 (i)	$WD = \frac{1}{2}x250x150^2 - \frac{1}{2}x250x100^2$	M1			
	1 560 000	A1	1 562 500		
	450 000 = 1 560 000/t	M1			
	3.47	A1 4			
(ii)	$F = 450\ 000/120$	M1			
	3750	A1			
	$3750 = 250a$ 15 ms^{-2}	M1			
	15 ms ⁻²	A1 4			8
		•			
4 (i)	x = 7t	B1			
	$y = 21t - 4.9t^2$	M1	$\mathbf{or} - \mathbf{g}/2$		
		A1			
	$y = 21.x/7 - 4.9 x^{2}/49$ $y = 3x - x^{2}/10$	M1			
	$y = 3x - x^2/10$	A1 5	AG		
(ii)	$-25 = 3x - x^2 / 10$ (must be -25)	M1	or method for total time (5.26)		
	solving quadratic	M1	or 7 x total time		
	36.8 m	A1 3			8
5(i)	½ . 70 .4 ²	M1			
	560 J	A1 2			
(ii)	70 x 9.8 x 6	M1			
	4120	A1 2	4116		
(iii)	60d	B1	7110		
(111)	8000 = 560 + 4120 + 60d	M1	4 terms		
	3000 - 300 + 4120 + 00 u	1V1 1	7 1011115		

A1 🗸

A1 4

55.4 m

1 their KE and PE

8

6 (i)	$5\cos 30^{\circ} = 0.3x9.8 + S\cos 60^{\circ}$	M1	res. vertically (3 parts with comps)
		A1	
	2.78 N	A1 3	
(ii)	$r = 0.4\sin 30^{\circ} = 0.2$	B1	may be on diagram
	$5\sin 30^{\circ} + \sin 60^{\circ} = 0.3 \times 0.2 \times \omega^{2}$	M1	res. horizontally (3 parts with comps)
	9.04 rads ⁻¹	A1 3	
(iii)	$v = 0.2 \times 9.04$	M1	or previous v via mv ² /r
	$KE = \frac{1}{2} \times 0.3 \times (0.2 \times 9.04)^2$	M1	
	0.491 J or 0.49	A1 3	1 their $\omega^2 \times 0.006$ 9

7 (i)	1.8 = -0.3 + 3m	M1	
	m = 0.7	A1 2	AG
(ii)	e = 4/6	M1	accept 2/6 for M1
	2/3	A1 2	accept 0.67
(iii)	± 3f	B1	
	1/3 ^o f (○ 1)	B1 2	
(iv)	$I = 3f \times 0.73 \times 0.7$	M1	ok for only one minus sign for M1
		A1	
	I = 2.1 (f + 1)	A1 3	aef 2 marks only for $-2.1(f+1)$
(v)	0.3 + 6.3/4 = 0.3a + 0.7b	M1	can be - 0.7b
	3a + 7b = 18.75	A1 *	aef
	2/3 = (a-b)/5/4	M1	allow e=3/4 or their e for M1
	3a - 3b = 5/2	A1 *	aef * means dependent.
	solve	M1	
	a = 2.5	A1	(2.46) allow \pm $(59/24)$
	b = 1.6	A1 7	(1.625) allow \pm $(13/8)$ 16

8 (i)	com of hemisphere 0.3 from O	B1	or 0.5 from base
	com of cylinder $h/2$ from O	B1	
	$0.6x45 = 40x0.5 + (0.8+h/2) \times 5$ or	M1	or $40x0.3 - 5xh/2 = 45 \times 0.2$
	45(h+0.2) = 5h/2 + 40(h+0.3)	A1	or $5(0.2 + h/2) = 40x0.1$
	$27 = 20 + (0.8 + h/2) \times 5$	M1	solving
	h = 1.2	A1 6	AG
(ii)	1.2 T	B1	
	0.8 F	B1	
	0.8F = 1.2T	M1	
	F = 3T/2	A1 4	aef
(iii)	F + Tcos30°	B1	or 45 x 0.8 sin30°
	45sin30° must be involved in res.	B1	$T \times (1.2 + 0.8\cos 30^{\circ})$
	resolving parallel to the slope	M1	mom. about point of contact
	$F + T\cos 30^{\circ} = 45\sin 30^{\circ}$ aef	A1	45.0.8sin30°=T(1.2+0.8cos30°)
	T = 9.51	A1	
	F = 14.3	A1 6	16
or	$T + F\cos 30^{\circ} = R\sin 30^{\circ}$	B1	res. horizontally
(iii)	$R\cos 30^{\circ} + F\sin 30^{\circ} = 45$	B1	res. vertically
	tan30°=(T+Fcos30°)/(45-Fsin30°)	M1	eliminating R

Mark Scheme 4730 June 2007

1	(i) $[\omega = 2\pi/6.1 = 1.03]$	M1		For using $T = 2 \pi / \omega$
		M1		For using $v_{max} = a \omega$
	Speed is 3.09ms ⁻¹	A1	3	
	(ii)	M1		For using $v^2 = \omega^2 (A^2 - x^2)$
				or for using $v = A \omega \cos \omega t$ and x
				$= A \sin \omega t$
	$2.5^2 = 1.03^2(3^2 - x^2)$	A1ft		ft incorrect ω
	or $x = 3\sin(1.03x0.60996)$			
	Distance is 1.76m	A1	3	
2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle with magnitudes

2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle w	vith magnitudes	
	For magnitudes of 2 sides correctly marked	A 1				
	For magnitudes of all 3 sides correctly marked	A 1				
		M1		_	g to find angle (α are side of magnitud	-
		M1		For correct us or equivalent	se of the cosine rul	e
	$0.399^2 = 0.57^2 + 0.6^2 - 2 \times 0.57 \times 0.6\cos\alpha$	A1ft		•		
	Angle is 140°	A1	7	(180	$-39.8)^{0}$	

2	ALTERNATIVE METHOD			
		M1		For using $I = \Delta mv$ parallel to the initial direction of motion or parallel to the impulse
	$-0.6\cos\alpha = 0.057 \times 7\cos\beta - 0.057 \times 10$	A1		-
	or $0.6 = 0.057 \times 10 \cos \alpha + 0.057 \times 7 \cos \gamma$			
		M1		For using I= Δ mv perpendicular to the initial direction of motion or perpendicular to the impulse
	$0.6\sin\alpha = 0.057 \times 7\sin\beta$	A 1		
	or $0.057 \times 10 \sin \alpha = 0.057 \times 7 \sin \gamma$			
		M1		For eliminating β *or γ
	$0.399^{2} = (0.57 - 0.6\cos\alpha)^{2} + (0.6\sin\alpha)^{2}$ or $0.399^{2} = (0.6 - 0.57\cos\alpha)^{2} + (0.057\sin\alpha)^{2}$	A1ft		
	Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$

3 (i) $[0.2v dv/dx = -0.4v^2]$	M1		For using Newton's second law with a = v dv/dx
(1/v) dv/dx = -2	A1	2	AG
(ii) $ \left[\int (1/v) dv = \int -2dx \right] $	M1		For separating variables and attempting to integrate
ln v = -2x (+C)	A 1		
$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
$v = ue^{-2x}$	A1	4	AG
(iii) $ [\int e^{2x} dx = \int u dt] $	M1		For using v = dx/dt and separating variables
$e^{2x}/2 = ut$ (+C)	A 1		
$[e^{2x}/2 = ut + \frac{1}{2}]$	M1		For using $x(0) = 0$
u = 6.70	A1	4	Accept $(e^4 - 1)/8$

ALTERNATIVE METHOD FOR PART (iii)			
$\left[\int \frac{1}{v^2} dv = -2 \int dt - 1/v = -2t + A, \text{ and} \right]$	M1		For using a = dv/dt, separating variables, attempting to integrate
A = -1/u]			and using $v(0) = u$
	M1		For substituting $v = ue^{-2x}$
$-e^{2x}/u = -2t - 1/u$	A 1		-
u = 6.70	A1	4	Accept $(e^4 - 1)/8$

4	$y=15\sin\alpha$ (=12)	B1		
	$[4(15\cos\alpha) - 3 \times 12 = 4a + 3b]$	M1		For using principle of conservation of momentum in the direction of l.o.c.
	Equation complete with not more than one error	A 1		
	4a + 3b = 0	A 1		
		M1		For using NEL in the direction of l.o.c.
	$0.5(15\cos\alpha + 12) = b - a$	A 1		
	[a = -4.5, b = 6]	M1		For solving for a and b
	[Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)]	M1		For correct method for speed or direction of A
	Speed of A is 12.8ms ⁻¹ and direction is 111°	A 1		Direction may be stated in any
	anticlockwise from 'i' direction			form, including $\theta = 69^{\circ}$ with
				θ clearly and appropriately indicated
	Speed of B is 6ms ⁻¹ to the right	A1	10	Depends on first three M marks

5	(i)	M1		For taking moments of forces on BC about B
	$80 \times 0.7\cos 60^{\circ} = 1.4T$	A 1		
	Tension is 20N	A 1		
	$[X = 20\cos 30^{\circ}]$	M1		For resolving forces horizontally
	Horizontal component is 17.3N	A1ft		$ft X = T\cos 30^{\circ}$
	$[Y = 80 - 20\sin 30^{\circ}]$	M1		For resolving forces vertically
	Vertical component is 70N	A1ft	7	$ft Y = 80 - T\sin 30^{\circ}$
	(ii)	M1		For taking moments of forces on
	17.2 1.4 (00 0.7 . 70 1.4)	. 10		AB, or on ABC, about A
	$17.3 \times 1.4 \sin \alpha = (80 \times 0.7 + 70 \times 1.4) \cos \alpha$ or	A1ft		
	$80x0.7\cos\alpha + 80(1.4\cos\alpha + 0.7\cos60^{\circ}) =$			
	$20\cos 60^{\circ}(1.4\cos \alpha + 1.4\cos 60^{\circ}) +$			
	$20\sin 60^{\circ} (1.4\sin \alpha + 14\sin 60^{\circ})$			
	$[\tan \alpha = (\frac{1}{2} 80 + 70)/17.3 = \frac{11}{\sqrt{3}}]$	M1		For obtaining a numerical expression for $\tan \alpha$
	$\alpha = 81.1^{\circ}$	A1	4	

ALTERNATIVE METHOD FOR PART (i)	_	
	M1	For taking moments of forces on
		BC about B
$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	A1	Where H and V are components of
		T
	M1	For using $H = V \sqrt{3}$ and solving
		simultaneous equations
Tension is 20N	A1	Simultaneous equations
		ft value of H used to find T
Horizontal component is 17.3N	B1ft	ft value of H used to find T
[Y = 80 - V]	M1	For resolving forces vertically
Vertical component is 70N	A1ft 7	ft value of V used to find T

6	(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
	$2058x/5.25 = 80 \times 9.8 \qquad (x = 2)$	A 1		
	OP = 7.25 m	A 1	3	AG From 5.25 + 2
	(ii) Initial PE = $(80 + 80)g(5)$ (= 7840)	B1		
	or $(80 + 80)$ gX used in energy equation			
	Initial KE = $\frac{1}{2}$ (80 + 80)3.5 ² (= 980)	B1		
	[Initial EE = $2058x2^2/(2x5.25)$ (= 784),	M1		For using $EE = \lambda x^2/2L$
	Final EE = $2058x7^2/(2x5.25)$ (= 9604), or			
	$2058(X+2)^2/(2x5.25)$			
	[Initial energy = $7840 + 980 + 784$,	M1		For attempting to verify
	final energy = 9604			compatibility with the
	or $1568X + 980 + 784 = 196(X^2 + 4X + 4)$			principle of conservation of
	$196X^2 - 784X - 980 = 0$			energy, or using the principle
				and solving for X
	Initial energy = final energy or $X = 5 \rightarrow P\&Q$ just reach	A 1	5	AG
	the net			
	(iii) [PE gain = $80g(7.25 + 5)$]	M1		For finding PE gain from net
				level to O
	PE gain = 9604	A 1		
	PE gain = EE at net level → P just reaches O	<u>A1</u>	3	AG
	(iv) For any one of 'light rope', 'no air	B1		
	resistance', 'no energy lost in rope'			
	For any other of the above	B1	2	

FIRST ALTERNATIVE METHOD FOR			
PART (ii)			
[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second law with $a = v dv/dx$, separating the variables and attempting to integrate
$v^2/2 = gx - 1.225x^2 (+ C)$	A 1		Any correct form
	M1		For using $v(2) = 3.5$
C = -8.575	A 1		
$[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P&Q \text{ just}$ reach the net	A1	5	AG

(ii)				
$\ddot{x} = g - 2.45x$	(=-2.45(x-4))	B1		
		M1		For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$
$3.5^2 = 2.45(A^2 - (-2)^2)$	(A=3)	A 1		
[(4-2)+3]		M1		For using 'distance travelled downwards by P and Q = distance to new equilibrium position + A
distance travelled downward just reach the net	ds by P and $Q = 5 \rightarrow P Q$	A1	5	ĀG

7	(i) $[a = 0.7^2/0.4]$	M1		For using $a = v^2/r$
'	For not more than one error in	A1		Tor using a V/I
	T - $0.8g\cos 60^{\circ} = 0.8x0.7^{2}/0.4$	711		
	Above equation complete and correct	A 1		
	Tension is 4.9N	A1	4	
	(ii)	M1		For using the principle of
	(11)	1711		conservation of energy
	$\frac{1}{2} 0.8 v^2 =$	A 1		(v = 2.1)
	$\frac{720.80^{\circ}}{120.8(0.7)^2} + 0.8g0.4 - 0.8g0.4 \cos 60^{\circ}$	Al		$(\mathbf{v} - 2.1)$
	(2.1-0)/7 = 2u	M1		For using NEL
	Q's initial speed is 0.15ms ⁻¹	A1	4	AG
	(iii)	M1		For using Newton's second
	(III)	IVI I		law transversely
	() 0 4 $\ddot{0}$ () : 0	A 1		*Allow $m = 0.8$ (or any other
	$(m)0.4\ddot{\theta} = -(m)g \sin \theta$	Al		numerical value)
	50.40	M1		,
	$[0.4\ddot{\theta}\approx -g\theta]$			For using $\sin \theta \approx \theta$
	$[\frac{1}{2} \text{ m}0.15^2 = \text{mg}0.4(1 - \cos\theta_{\text{max}})$	M1		For using the principle of
	$\rightarrow \theta_{\text{max}} = 4.34^{\circ} (0.0758 \text{rad})$			conservation of energy to
				find
				$ heta$ $_{ ext{max}}$
	$\theta_{\rm max}$ small justifies $0.4\ddot{\theta} \approx -g\theta$, and this implies	A 1	5	
	SHM			
	(iv) $[T = 2\pi/\sqrt{24.5} = 1.269]$	M1		For using $T = 2 \pi / n$
	$\left[\sqrt{24} \right]_{5} t = \pi$			or
	[V21 .5]			for solving either $\sin nt = 0$
				(non-zero t) (considering
				displacement) or $\cos nt = -1$
				(considering velocity)
	Time interval is 0.635s	A1ft	2	From $t = \frac{1}{2} T$

Mark Scheme 4731 June 2007

4.0		3.61	
1 (i)	Using $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$, $56 = 0 + \frac{1}{2} \alpha \times 8^2$	M1	
	$\alpha = 1.75 \mathrm{rad}\mathrm{s}^{-2}$	A1	
		2	
(ii)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $36^2 = 20^2 + 2 \times 1.75\theta$	M1	
	$\theta = 256 \text{ rad}$	A1 ft	ft is $448 \div \alpha$
		2	
2	· · · · · · · · · · · · · · · · · ·		π may be omitted throughout
	Volume is $\int_0^a \pi (4a^2 - x^2) dx = \pi \left[4a^2 x - \frac{1}{3} x^3 \right]_0^a$	M1	(Limits not required)
	$=\frac{11}{3}\pi a^3$	A1	
	$\int_{-\pi}^{a} r(4a^2 - r^2) dr$		
		M1	
	$\int_0^a \pi x (4a^2 - x^2) dx$ $= \pi \left[2a^2 x^2 - \frac{1}{4} x^4 \right]_0^a$	A1	(Limits not required)
	$= \frac{7}{4} \pi a^4$		(Ellints not required)
		A1	
	$\overline{x} = \frac{\frac{7}{4}\pi a^4}{\frac{11}{3}\pi a^3}$		(2 J
	$\frac{11}{3}\pi a^3$	M1	$\int \int x y^2 dx$
	$=\frac{21}{44}a$		$\int y dx$
	44	A1	
		7	
3 (i)	$I = 6.2 + 2.8 = 9.0 \text{ kg m}^2$	B1	
		1	
(ii)	WD against frictional couple is $L \times \frac{1}{2}\pi$	B1	
	Loss of PE is $6 \times 9.8 \times 1.3$ (= 76.44)	B1	
	Gain of KE is $\frac{1}{2} \times 9.0 \times 2.4^2$ (= 25.92)	B1 ft	
	By work-energy principle,		
	$L \times \frac{1}{2}\pi = 76.44 - 25.92$	M1	Equation involving WD, KE and
	L = 32.2 N m	A1	PĒ
			Accept 32.1 to 32.2
(iii)		M1	Moments equation
	$6 \times 9.8 \times 0.8 - L = I \alpha$	A1 ft	
	$\alpha = 1.65 \text{rad s}^{-2}$	A1	
		3	

4 (i)	MI of elemental disc about a diameter is $\frac{1}{4} \left(\frac{M}{3a} \delta x \right) a^2$	D1	$\frac{M}{3a}$ may be $\rho \pi a^2$ throughout (condone use of $\rho = 1$)
	MI of elemental disc about AB is $ \frac{1}{4} \left(\frac{M}{3a} \delta x \right) a^2 + \left(\frac{M}{3a} \delta x \right) x^2 $	B1 M1 A1	Using parallel axes rule (can award A1 for $\frac{1}{4}ma^2 + mx^2$) Integrating MI of disc <i>about AB</i>
	$I = \frac{M}{3a} \int_0^{3a} (\frac{1}{4}a^2 + x^2) dx$ $= \frac{M}{3a} \left[\frac{1}{4}a^2x + \frac{1}{3}x^3 \right]_0^{3a}$	M1 A1	Correct integral expression for I
	$= \frac{M}{3a} \left(\frac{3}{4}a^3 + 9a^3\right)$ $= M\left(\frac{1}{4}a^2 + 3a^2\right)$ $= \frac{13}{4}Ma^2$	M1	Obtaining an expression for <i>I</i> in terms of <i>M</i> and <i>a</i> Dependent on previous M1
		A1 (ag) 7	
(ii)	Period is $2\pi \sqrt{\frac{I}{Mgh}}$	M1	or $-Mgh\sin\theta = I\ddot{\theta}$
	$=2\pi\sqrt{\frac{\frac{13}{4}Ma^2}{Mg\frac{3}{2}a}}$	A1	
	$=2\pi\sqrt{\frac{13a}{6g}}$	A1 3	

5 (i)	$\frac{\sin \theta}{12} = \frac{\sin 115}{16}$ $\theta = 42.8^{\circ}$ Bearing of \mathbf{v}_B is 007.2°	M1 A1 M1	Relative velocity on bearing 050 Correct velocity diagram; or
	$\frac{u}{\sin 22.2} = \frac{16}{\sin 115}$ $u = 6.66$ Time taken is $\frac{2400}{6.664} = 360 \text{ s}$	M1 A1 M1*A1 ft 8	or obtaining equation for u (or α) For equations in α and t M1*M1A1 for equations M1 for eliminating t (or α) A1 for $\alpha = 7.2$ M1A1 ft for equation for t (or α) A1 cao for $t = 360$
(ii)	$\cos \phi = \frac{10}{12}$ $\phi = 33.6^{\circ}$ Bearing of \mathbf{v}_B is 018.6°	M1 A1 M1 A1	Relative velocity perpendicular to \mathbf{v}_B Correct velocity diagram For alternative methods: M2 for a completely correct method A2 for 018.6 (give A1 for a correct relevant angle)

6 (i)	$I = \frac{1}{3}ma^2 + m(\frac{1}{3}a)^2$		M1		Using parallel axes rule
	$=\frac{4}{9}ma^2$		A 1		
	$mg(\frac{1}{3}a\cos\theta) = I\alpha$		M1		
	$\alpha = \frac{\frac{1}{3} mga \cos \theta}{\frac{4}{9} ma^2} = \frac{3g \cos \theta}{4a}$		A1 (ag)	4	
(ii)	By conservation of energy,		M1		
	$\frac{1}{2}I\omega^2 = mg(\frac{1}{3}a\sin\theta)$		A1 ft		
	$\frac{2}{9}ma^2\omega^2 = \frac{1}{3}mga\sin\theta$				
	$\omega = \sqrt{\frac{3g\sin\theta}{2a}}$		A1	3	Condone $\omega^2 = \frac{3g\sin\theta}{2a}$
	OR $\omega \frac{\mathrm{d}\omega}{\mathrm{d}\theta} = \frac{3g\cos\theta}{4a}$	M1			
	$\frac{1}{2}\omega^2 = \int \frac{3g\cos\theta}{4a} d\theta$ $= \frac{3g\sin\theta}{4a} (+C)$	A1			
	$\omega = \sqrt{\frac{3g\sin\theta}{2a}}$	A1			
(iii)	Acceleration parallel to rod is $(\frac{1}{3}a)\omega^2$		B1		
	$F - mg\sin\theta = m(\frac{1}{3}a)\omega^2$		M1		Radial equation with 3 terms
	$F - mg\sin\theta = \frac{1}{2}mg\sin\theta$		1411		readian equation with 5 terms
	$F = \frac{3}{2} mg \sin \theta$		A 1		
	Acceleration perpendicular to rod is $(\frac{1}{3}a)\alpha$		B1 ft		ft is $r\alpha$ with r the same as before
	$mg\cos\theta - R = m(\frac{1}{3}a)\alpha$		M1		Transverse equation with 3 terms
	$mg\cos\theta - R = \frac{1}{4}mg\cos\theta$				
	$R = \frac{3}{4} mg \cos \theta$		A1		
				6	
	$OR R(\frac{1}{3}a) = I_G \alpha$	M1			Must use I_G
	$R(\frac{1}{3}a) = (\frac{1}{3}ma^2)\left(\frac{3g\cos\theta}{4a}\right)$	A1			
	$R = \frac{3}{4} mg \cos \theta$	A 1			
(iv)	On the point of slipping, $F = \mu R$				
	$\frac{3}{2}mg\sin\theta = \mu(\frac{3}{4}mg\cos\theta)$		M1		
	$\tan \theta = \frac{1}{2} \mu$		A1 (ag)	2	Correctly obtained Dependent on 6 marks earned in (iii)

7 (i)	$GPE = (-) mg(2a\cos\theta)\cos\theta$	B1	or $(-) mg(a + a \cos 2\theta)$
	$EPE = \frac{\frac{1}{2}mg}{2a}(AR - a)^2$	M1	() ()
	$=\frac{\frac{1}{2}mg}{2a}(2a\cos\theta-a)^2$	A1	
	$V = \frac{1}{4} mga(2\cos\theta - 1)^2 - 2mga\cos^2\theta$		
	$= mga(\cos^2\theta - \cos\theta + \frac{1}{4} - 2\cos^2\theta)$		
	$= mga(\frac{1}{4} - \cos\theta - \cos^2\theta)$	A1 (ag) 4	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(\sin\theta + 2\cos\theta\sin\theta)$ $= mga\sin\theta(1 + 2\cos\theta)$	B1	
	Equilibrium when $\frac{dV}{d\theta} = 0$ ie when $\theta = 0$	M1 A1 (ag)	
(iii)	KE is $\frac{1}{2}m(2a\dot{\theta})^2$	B1	
	$2ma^2\dot{\theta}^2 + V = \text{constant}$ Differentiating with respect to t,	M1	
	$4ma^2\dot{\theta}\ddot{\theta} + \frac{\mathrm{d}V}{\mathrm{d}\theta}\dot{\theta} = 0$	M1	(can award this M1 if no KE term)
	$4ma^2\dot{\theta}\ddot{\theta} + mga\sin\theta(1+2\cos\theta)\dot{\theta} = 0$	A1 ft	
	$\ddot{\theta} = -\frac{g}{4a}\sin\theta(1+2\cos\theta)$	A1 (ag) 5	SR B2 (replacing the last 3 marks) for the given result correctly obtained by differentiating w.r.t. θ
(iv)	When θ is small, $\sin \theta \approx \theta$, $\cos \theta \approx 1$	M1	
	$\ddot{\theta} \approx -\frac{g}{4a}\theta(1+2) = -\frac{3g}{4a}\theta$	A1	
	Period is $2\pi \sqrt{\frac{4a}{3g}}$	A1 3	
		3	

Mark Scheme 4732 June 2007

Note: "3 sfs"	means an answer which is equal to, or rounds to, the given a	nswer. If such	an answer is seen and then later rounded, apply ISW.
1	$(0\times0.1) + 1\times0.2 + 2\times0.3 + 3\times0.4$	M1	\geq 2 non-zero terms correct eg \div 4: M0
	= 2(.0)	A1	
	$(0^2 \times 0.1) + 1 \times 0.2 + 2^2 \times 0.3 + 3^2 \times 0.4 $ (= 5)	M1	\geq 2 non-zero terms correct \div 4: M0
	$\begin{vmatrix} -2^2 \end{vmatrix}$	M1	Indep, ft their μ . Dep +ve result
	= 1		macp, it then μ. Dep i ve result
	- 1	A1	(2)2 01.(1)2 02.02 02.12 04.15
		5	$(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4$:M2
			\geq 2 non-0 correct: M1 \div 4: M0
Total		5	
2	UK Fr Ru Po Ca		Consistent
	1 2 3 4 5 or 5 4 3 2 1	M1	attempt rank RCFUP
	1 2 3 4 5 or 5 4 3 2 1 4 3 1 5 2 2 3 5 1 4	A1	other judge 35214 31452
	Σd^2	M1	12345 54321
		IVI I	
	(= 24)		2
	$r_s = 1 - \frac{6 \times \text{``24''}}{5 \times (5^2 - 1)}$	M1	All 5 d^2 attempted & added. Dep ranks
	$5 \times (5^2-1)$		att'd
	$=-\frac{1}{5}$ or -0.2	A1	40 4525
	. 5	5	Dep 2^{nd} M1 $\frac{43-15^2/5}{\sqrt{((55-15^2/5)(55-15^2/5))}}$
			$\begin{array}{c c} Corr sub in \geq 2 S's & M1 \end{array}$
			All correct: M1
TD 4 3		_	
Total	15 151	5	
3i	15 C ₇ or $^{15!}$ / _{7!8!}	M1	
	6435	A1	
		2	
ii	$^{6}C_{3} \times ^{9}C_{4} \text{ or } ^{6!}/_{3!3!} \times ^{9!}/_{4!5!}$	M1	Alone except allow ÷ ¹⁵ C ₇
"	C3 · C4 O1 /3!3! · /4!5!	1411	Or ${}^{6}P_{3} \times {}^{9}P_{4}$ or ${}^{6!}/_{3!} \times {}^{9!}/_{5!}$ Allow $\div {}^{15}P_{7}$
			NB not ${}^{6!}_{/3!} \times {}^{9!}_{/4!}$
	2520	A 1	J
	2520	A1	362880
		2	
Total		4	
4ia	$^{1}/_{3}$ oe	B1 1	B↔W MR: max (a)B0(b)M1M1(c)B1M1
			.,,,,,
b	P(BB) + P(WB) attempted	M1	$Or^{4}/_{10} \times ^{3}/_{9} OR^{-6}/_{10} \times ^{4}/_{9} correct$
	$= \frac{4}{10} \times \frac{3}{9} + \frac{6}{10} \times \frac{4}{9} \text{ or } \frac{2}{15} + \frac{4}{15}$	M1	
	$=\frac{2}{5}$ oe	A1	$NB^{4}/_{10} \times {}^{4}/_{10} + {}^{6}/_{10} \times {}^{4}/_{10} = {}^{2}/_{5}$: M1M0A0
	,, , , ,	3	75. 14111410710
	Danama O & O acan an incutic 1		Or 2/ og nymarstar
c	Denoms 9 & 8 seen or implied	B1	Or ² / ₁₅ as numerator
	$^{3}/_{9} \times ^{2}/_{8} + ^{6}/_{9} \times ^{3}/_{8}$	M1	Or $\frac{\frac{2}{15}}{\frac{4}{10}}$ Or $\frac{\frac{4}{10}x^{6}/_{9}x^{3}/_{8} + \frac{4}{10}x^{3}/_{9}x^{2}/_{8}}{above + \frac{6}{10}x^{5}/_{9}x^{4}/_{8} + \frac{6}{10}x^{4}/_{9}x^{3}/_{8}}$
			above + ${}^{6}/_{10}$ $\times {}^{5}/_{9} \times {}^{4}/_{8} + {}^{6}/_{10} \times {}^{4}/_{9} \times {}^{3}/_{8}$
	$= \frac{1}{3}$ oe	A1	May not see wking
		3	
ii	P(Blue) not constant or discs not indep,		Prob changes as discs removed
11		D1 1	•
	so no	B1 1	Limit to no. of discs. Fixed no. of discs
			Discs will run out
			Context essential: "disc" or "blue"
			NOT fixed no. of trials
			NOT because without repl Ignore extra
Total		8	
iviai		U	1

5i	1991	B1 ind	Or fewer in 2001
	100 000 to 110 000	B1 ind	Allow digits 100 to 110
		2	
iia	Median = 29 to 29.9	B1	
	Quartiles 33 to 34, 24.5 to 26	M1	Or one correct quartile and subtr
	= 7.5 to 9.5	A1	NOT from incorrect wking
	140 to 155	M1	×1000, but allow without
	23 to 26.3%	A1	Rnded to 1 dp or integer 73.7 to 77%: SC1
		5	
b	Older	B1	Or 1991 younger
	Median (or ave) greater }		Any two
	% older mothers greater oe}	B1	Or 1991 steeper so more younger: B2
	% younger mothers less oe}	B1 3	NOT mean gter
			Ignore extra
Total		10	

6ia	Correct subst in \geq two S formulae	M1		Any version
	$\frac{767 - \frac{60 \times 72}{8} \text{or } \frac{227}{\sqrt{698\sqrt{162}}}}{\sqrt{(1148 - \frac{60^2}{8})(810 - \frac{72^2}{8})}}$	M1		All correct. Or $\underline{767-8x7.5x9}$ $\sqrt{((1148-8x7.5^2)(810-8x9^2))}$ or correct substn in any correct formula for r
	= 0.675 (3 sfs)	A1	3	
b	1 y always increases with x or ranks same oe	B1 B1	2	+ve grad thro'out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1, or increases because nearer to st line	B1 B1	2	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because <i>y</i> still increasing with <i>x</i> oe	B1 B1	2	Σd^2 still 0. Still same order. Ignore extra NOT differences still the same. NOT ft (i)(b)
iii	13.8 to 14.0	В1	1	
iv	(iii) or graph or diag or my est Takes account of curve	B1 B1	2	Must be clear which est. Can be implied. "This est" probably ⇒ using equn of line Straight line is not good fit. Not linear. Corr'n not strong.
Total		12	2	
7i	P(contains voucher) constant oe Packets indep oe	B1 B1	2	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2	2	B1 for 0.9456 or 0.946 or 0.997(2) or for 7 terms correct, allow one omit or extra NOT 1 – 0.9857 = 0.0143 (see (iii))
iii	(1 - 0.9857) = 0.014(3) (2 sfs)	B1ft 1		Allow 1- their (ii) correctly calc'd
iv	B(11, 0.25) or 6 in 11 wks stated or impl ${}^{11}C_6 \times 075^5 \times 0.25^6$ (= 0.0267663) P(6 from 11) × 0.25 = 0.00669 or 6.69 x 10 ⁻³ (3 sfs)	B1 M1 M1 A1	4	or $0.75^a \times 0.25^b$ ($a + b = 11$) or ${}^{11}C_6$ dep B1
Total		9		

8i	(0.04 (-0.2)	M1	
01	$\sqrt{0.04} = 0.2$ $(1 - \text{their } \sqrt{0.04})^2$	M1	
	$(1 - \text{then } \sqrt{0.04})$ = 0.64	A1 3	
ii	4	B1	
11		M1	2ng= 0.42 or ng =0.21 Allow ng=0.42
	$2p(1-p) = 0.42$ or $p(1-p) = 0.21$ oe $2p^2 - 2p + 0.42(=0)$ or $p^2 - p + 0.21(=0)$	M1	2pq=0.42 or $pq=0.21$ Allow $pq=0.42$ or opp signs, correct terms any order (= 0)
	2p - 2p + 0.42(-0) or $p - p + 0.21(-0)$	IVI I	of opp signs, correct terms any order (= 0)
	$\frac{2\pm\sqrt{((-2)^2-4\times0.42)}}{2\times2} \text{ or } \frac{1\pm\sqrt{((-1)^2-4\times0.21)}}{2\times1}$		oe Correct
	or $(p-0.7)(p-0.3)=0$ or $(10p-7)(10p-3)=0$	M1	Dep B1M1M1 Any corr subst'n or fact'n
	p = 0.7 or 0.3	A1 5	Dep Biwiiwii Any con suost ii oi iact ii
	p = 0.7 of 0.3	AI J	Omit 2 in 2 nd line: max B1M1M0M0A0
			One corr ans with no or inadeq wking: SC1
			eg $0.6 \times 0.7 = 0.42 \Rightarrow p = 0.7$ or 0.6
			$\begin{array}{c} cg \ 0.0 \ \land \ 0.7 - 0.42 $
			$p^2 + 2pq + q^2 = 1$ B1
			$p^2 + 2pq + q^2 = 1$ B1 $p^2 + q^2 = 0.58$ }
			$p = 0.21/q$ }
			$p^4 - 0.58p^2 + 0.0441 = 0$ M1
			corr subst'n or fact'n M1
			Total Supply In Cit Index II
			1-p seen B1
			2p(1-p) = 0.42 or $p(1-p) = 0.21 M1$
			$p^2 - p = -0.21$
			$p^2 - p + 0.25 = -0.21 + 0.25$ oe } M1
			OR $(p-0.5)^2 - 0.25 = -0.21$ oe }
			$(p-0.5)^2 = 0.04$ M1
			$(p-0.5) = \pm 0.02$
			p = 0.3 or 0.7 A1
Total		8	
9ia	$1/^{1}/_{5}$	M1	
	= 5	A1 2	
b	$(^4/_5)^3 \times ^1/_5$	M1	
	$= {}^{64}/_{625}$ or 0.102 (3 sfs)	A1 2	
c	$(^{4}/_{5})^{4}$	M1	or 1- $({}^{1}/_{5} + {}^{4}/_{5} \times {}^{1}/_{5} + ({}^{4}/_{5})^{2} \times {}^{1}/_{5} + ({}^{4}/_{5})^{3} \times {}^{1}/_{5})$
	256		NOT 1 - $(^4/_5)^4$
	$=\frac{256}{625}$ or a.r.t 0.410 (3 sfs) or 0.41	A1 2	P(H, 1) · P(H, 2) · P(H, 5)
iia	$P(Y=1) = p, P(Y=3) = q^2p, P(Y=5) = q^4p$		$P(Y=1)+P(Y=3)+P(Y=5)=p+q^{2}p+q^{4}p$ $p, p(1-p)^{2}, p(1-p)^{4}$ $q^{1-1}q^{3-1}q^{5-1}$
			$p, p(1-p)^{-}, p(1-p)^{-}$
			1, 1, 1, 1
			or any of these with $1-p$ instead of q
			"Always q to even power × p" Either associate each term with relevant prob
		B1 1	Either associate each term with relevant prob Or give indication of how terms derived
		ויום	of give indication of now terms derived ≥ two terms
b	Recog that c.r. = q^2 or $(1-p)^2$	M1	or eg $r = q^2 p/p$
		1,11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		3.51	
	$S_{\infty} = \frac{P}{1 - a^2}$ or $\frac{P}{1 - a^2}$	M1	
	$S_{\infty} = \frac{p}{1 - q^2} \text{or} \frac{p}{1 - (1 - p)^2}$	MI	
			(= p) = p
	$S_{\infty} = \frac{p}{1 - q^2}$ or $\frac{p}{1 - (1 - p)^2}$ $P(\text{odd}) = \frac{1 - q}{1 - q^2}$		$ (= \underline{p}) = \underline{p} $ $ (2p - p^2) = \underline{p} $
	$P(\text{odd}) = \frac{1 - q}{1 - q^2}$		$\left(\begin{array}{c} (=\underline{p}) = \underline{p} \\ (2p-p^2) = p(2-p) \end{array}\right)$
	$P(\text{odd}) = \frac{1 - q}{1 - q^2}$		$ (= \underline{p}) = \underline{p} $ $ (2p - p^2) = \underline{p} $ $ (= \underline{1}) = \underline{1} $
	$P(\text{odd}) = \frac{1-q}{1-q^2}$ $= \frac{1-q}{(1-q)(1+q)}$ Must see this step for A1		$ (= \underline{p}_{2p-p^2}) = \underline{p}_{p(2-p)} $ $ (= \underline{1}_{2-p}) = \underline{1}_{2-(1-q)} $
	$P(\text{odd}) = \frac{1 - q}{1 - q^2}$		$(=\frac{p}{2p-p^2}) = \frac{p}{p(2-p)}$ $(=\frac{1}{2-p}) = \frac{1}{2-(1-q)}$

Total	11	

Mark Scheme 4733 June 2007

1	(i)	$\hat{\mu} = 4830.0/100 = 48.3$	B1		48.3 seen
1	(1)	•	M1		Biased estimate: 162.2016: can get B1M1M0
		$249509.16/100 - (\text{their } \bar{x}^2)$	M1		Multiply by $n/(n-1)$
		× 100/99	A1	4	Answer, 164 or 163.8 or 163.84
	(::)	= 163.84			
	(ii)	No, Central Limit theorem applies,	B2	2	"No" with statement showing CLT is understood
		so can assume distribution is normal			(though CLT does not need to be mentioned) [SR: No with reason that is not wrong: B1]
2		B(130, 1/40)	B1		B(130, 1/40) stated or implied
			M1		Poisson, <i>or</i> correct N on their $B(n, p)$
		$\approx \text{Po}(3.25)$	A1√		Parameter their np , or correct parameter(s) $$
		$e^{-\lambda} \frac{\lambda^{\tau}}{4!}$	M1		Correct formula, or interpolation
		= 0.180	A1	5	Answer, 0.18 or a.r.t. 0.180
		- 0.180	711	3	[SR: N(3.25, 3.17) or N(3.25, 3.25): B1M1A1]
3	(i)	Binomial	B1	1	Binomial stated or implied
	(ii)	Each element equally likely	B1		All elements, or selections, equally likely stated
	(11)	Choices independent	B1	2	Choices independent [not just "independent"]
		Chores marpenaem		-	[can get B2 even if (i) is wrong]
4	(i)	Two of: Distribution symmetric	B1		One property
		No substantial truncation	B1	2	Another definitely different property
		Unimodal/Increasingly			Don't give both marks for just these two
		unlikely further from μ, etc			"Bell-shaped": B1 only unless "no truncation"
	(ii)	Variance 8 ² /20	M1		Standardise, allow cc, don't need <i>n</i>
	()	$z = \frac{47.0 - 50.0}{\sqrt{1 - 1000}} = -1.677$	A1		Denominator (8 or 8^2 or $\sqrt{8}$) ÷ (20 or $\sqrt{20}$ or 20^2)
		$z = \frac{1.077}{\sqrt{8^2/20}}$	A1		z-value, a.r.t1.68 or +1.68
		• • • •	A1	4	Answer, a.r.t. 0.953
5	(i)	$\Phi(1.677) = 0.9532$ H ₁ : $\lambda > 2.5$ or 15	B1	1	$\lambda > 2.5$ or 15, allow μ , don't need "H ₁ "
3	(ii)	Use parameter 15	M1		$\lambda = 15$ used [N(15, 15) gets this mark only]
	(11)	P(> 23)	M1		Find P(> 23 or \geq 23), final answer $<$ 0.5
		1 (* 23)	1411		eg 0.0327 or 0.0122
		1 - 0.9805 = 0.0195 or $1.95%$	A1	3	Answer, 1.95% or 2% or 0.0195 or 0.02
			111		[SR: 2-tailed, 3.9% gets 3/3 here]
	(iii)	$P(\le 23 \mid \lambda = 17) = 0.9367$	M1		One of these, or their complement: .9367, .8989,
	(111)	$P(\le 23 \mid \lambda = 18) = 0.8989$	1,11		0.9047, 0.8551, .9317, .8933, .9907, .9805
		Parameter = 17	A1		Parameter 17 [17.1076], needs $P(\le 23)$, cwo
		1 4244114441			[SR: if insufficient evidence can give B1 for 17]
		$\lambda = 17/6 \text{ or } 2.83$	M1	3	Their parameter \div 6 [2.85]
					[SR: Solve $(23.5 - \lambda)/\sqrt{\lambda} = 1.282 \text{ M1}$; 18.05 A0]
6	(i)	H_0 : $p = 0.19$, H_1 : $p < 0.19$	B2		Correct, B2. One error, B1, but x or \bar{x} or r: B0
	` /	where p is population proportion	M1		Binomial probabilities, allow 1 term only
		$0.81^{20} + 20 \times 0.81^{19} \times 0.19$	A1		Correct expression $[0.0148 + 0.0693]$
		= 0.0841	A1		Probability, a.r.t. 0.084
		Compare 0.1	B1		Explicit comparison of "like with like"
	or	Add binomial probs until ans > 0.1	A1		$[P(\le 2) = 0.239]$
		Critical region ≤ 1	B1		
		Reject H ₀	M1		Correct deduction and method [needs $P(\le 1)$]
		Significant evidence that proportion	A1√	8	Correct conclusion in context
		of <i>e</i> 's in language is less than 0.19			[SR: N(3.8, 3.078): B2M1A0B1M0]
	(ii)	Letters not independent	B1	1	Correct modelling assumption, stated in context
					Allow "random", "depends on message", etc

7	(i)	11	D1		Harizantal atraight line		
′	(i)		B1 B1		Horizontal straight line		
		\ /		•	Positive parabola, symmetric about 0		
			B1	3	Completely correct, including correct relationship		
					between two		
				Don't need vertical lines or horizontal			
					range, but don't give last B1 if horizontal line		
					continues past "±1"		
	(ii)	(ii) S is equally likely to take any value		2	Correct statement about distributions (not graphs)		
	. ,	in range, T is more likely at			[Partial statement, or correct description		
		extremities			for one only: B1]		
	(iii)	, Г 3 Л ¹	M1		Integrate $f(x)$ with limits $(-1, t)$ or $(t, 1)$		
	()	$\int_{t}^{1} \frac{3}{2} x^{2} dx = \left[\frac{x}{2} \right]_{t}$			[recoverable if <i>t</i> used later]		
					Correct indefinite integral		
	$\frac{1}{2}(1-t^3) = 0.2 \text{ or } \frac{1}{2}(t^3+1) = 0.8$		B1 M1		Equate to 0.2, or 0.8 if $[-1, t]$ used		
		$t^3 = 0.6$			Solve cubic equation to find t		
		t = 0.8434	M1 A1	5	Answer, in range [0.843, 0.844]		
8	(i)	(i) $\frac{64.2 - 63}{\sqrt{12.25/23}} = 1.644$			Standardise 64.2 with \sqrt{n}		
					z = 1.644 or 1.645, must be +		
		P(z > 1.644)			Find $\Phi(z)$, answer < 0.5		
		= 0.05		4	Answer, a.r.t. 0.05 or 5.0%		
	(ii)	(a) $63 + 1.645 \times \frac{3.5}{\sqrt{50}}$	M1		$63 + 3.5 \times k / \sqrt{50}$, k from Φ^{-1} , not –		
		$03 + 1.043 \times \frac{1}{\sqrt{50}}$	B1		k = 1.645 (allow 1.64, 1.65)		
		≥ 63.81	A1	3	Answer, a.r.t. 63.8, allow $>$, \geq , $=$, c.w.o.		
		(b) $P(< 63.8 \mid \mu = 65)$	M1		Use of correct meaning of Type II		
		$\frac{63.8 - 65}{3.5 / \sqrt{50}} = -2.3956$	M1		Standardise their c with $\sqrt{50}$		
		$\frac{1}{3.5/\sqrt{50}}$ 2.3730	A1		$z = (\pm) 2.40 \text{ [or } -2.424 \text{ or } -2.404 \text{ etc]}$		
		0.0083	A1	4	Answer, a.r.t. 0.008 [eg, 0.00767]		
	(iii)	B better: Type II error smaller	В2√	2	This answer: B2. "B because sample bigger": B1.		
	·	(and same Type I error)			[SR: Partial answer: B1]		
9	(a)				Use either $nq > 5$ or $npq > 5$		
	-				[SR: If M0, use $np > 5$, or " $n = 20$ " seen: M1]		
		n > 20	A1	3	Final answer $n > 20$ or $n \ge 20$ only		
	(b)	(i) $70.5 - \mu = 1.75\sigma$	M1		Standardise once, and equate to Φ^{-1} , $\pm cc$		
	-	$\mu - 46.5 = 2.25\sigma$	A1		Standardise twice, signs correct, cc correct		
		•	B1		Both 1.75 and 2.25		
		Solve simultaneously	M1		Correct solution method to get one variable		
		$\mu = 60$		μ , a.r.t. 60.0 or \pm 154.5			
		$\sigma = 6$		6	σ, a.r.t. 6.00 [Wrong cc (below): A1 both]		
					[SR: σ^2 : M1A0B1M1A1A0]		
		(ii) $np = 60, npq = 36$	M1dep		$np = 60$ and $npq = 6^2$ or 6		
		q = 36/60 = 0.6	depM1		Solve to get q or p or n		
		p = 0.4	Aĺ√		$p = 0.4 \sqrt{\text{on wrong cc or } z}$		
		n = 150	A1√	4	$n = 150 \sqrt{\text{on wrong cc or } z}$		
			· · · · · ·		1		

		σ	μ	q	$p(\pm 0.01)$	n
70.5	46.5	6	60	0.6	0.4	150
			60.062			
71	46	6.25	5	0.6504	0.3496	171.8
			60.562			
71.5	46.5	6.25	5	0.6450	0.3550	170.6
			59.562			
70.5	45.5	6.25	5	0.6558	0.3442	173.0
71.5	45.5	6.5	60.125	0.7027	0.2973	202.2
70	46	6	59.5	0.6050	0.3950	150.6

Mark Scheme 4734 June 2007

1	$\int_0^1 a dx + \int_1^\infty \frac{a}{x^2} dx = 1$	M1		For sum of integrals =1
	$\left[ax\right]_0^1 + \left[-\frac{a}{x^3}\right]_1^\infty = 1$	A1		For second integral.
	$a + a = 1$ $a = \frac{1}{2}$	A1 A1	4	For second a Or from F(x) M1A1 then F(∞)=1 M1, $a=^{1}/_{2}$ A1
2	(i) $\overline{X}_I \square N(5, \frac{0.7^2}{20})$	B1		If no parameters allow in (ii)
	$\bar{X}_E \Box \text{N}(4.5, \frac{0.5^2}{25})$	B1	2	If 0.7/20, 0.5/25 then B1 for
	23			both, with means in (ii)
	(ii) Use $\overline{X}_I - \overline{X}_E \square N(0.5, \sigma^2)$ $\sigma^2 = 0.49/20 + 0.25/25$ 1- $\Phi([1-0.5]/\sigma)$ = 0.0036 or 0.0035	M1A1 B1 M1 A1	5	OR $\overline{X}_I - \overline{X}_E - 1 \square$ N(-0.5, σ^2) cao RH probability implied. If 0.7, 0.5 in σ^2 , M1A1B0M1A1 for 0.165
3	Assumes differences form a random sample from a normal distribution. H_0 : $\mu = 0$, H_1 : $\mu > 0$ $\overline{x} = 17.2/12$; $s^2 = 10.155$ AEF	B1 B1B1	B1	Other letters if defined; or in words Or (12/11)(136.36/12-(17.2/12) ²)aef
	EITHER: $t = \frac{\overline{x}}{\sqrt{s^2/12}}$ (+ or -)	M1		With 12 or 9.309/11
	=1.558 1.363 seen 1.558 > 1.363, so reject H_0 and accept that there	A1 B1		Must be positive. Accept 1.56 Allow CV of 1.372 or 1.356 evidence
	that the readings from the aneroid device overestimate blood pressure on average	В1√		Explicit comparison of CV(not - with +) and conclusion in context.
	OR: For critical region or critical value of \overline{x} 1.363 $\sqrt{(s^2/12)}$ Giving 1.25(3)	M1B1 A1		B1 for correct <i>t</i>
	Compare 1.43(3) with 1.25(3) Conclusion in context	В1√	8	

4	(i)			roper					
		Р	Р 31	F 11	42	В	I		Two correct
	Trial	•	01		12	D .			1 wo contect
		F	5	13	18	В	1		Others correct
			36	24	60			2	
	(ii) (H ₀	: Tri	al result	s and Pr	oper results				
	are ind								
	E-valu	es:	25.2	16.8		M	1		One correct. Ft marginals in (i)
			10.8	7.2		Al			All correct
	$\gamma^2 = 5.3$	$3^2(25)$.2 ⁻¹ +10.	8 ⁻¹ +16.8	$^{-1}+7.2^{-1}$)	M	1		Allow two errors
	70	,			,	Al			With Yates' correction
	= 9.2	289				Al	Į.		art 9.29
				with 7.8		M	1		Or 7.88
	There indepe			nat resul	s are not	A 1	1	7	Ft χ^2_{calc} .
	(i) e ^{-\mu} =	= 0.4	5			М	1		
			$0 \approx 0.80$	AG		A		2	0.799 or 0.798 or better seen
	(ii) μ_U	≈ 1.8	 }			В:	 [
	Total,	$T \sim P$	0(2.6)			M	1		May be implied by answer 0.264
	P(>3)			A	1	3	From table or otherwise		
	(iii) e ⁻²			В:	l		Or 0.318 from table		
	e ⁻⁵	^{.2} 5.2	¹ /4!			В	1		
	Multip	ly tw	o proba	bilities		M	1		
	Answe	rs ro	unding t	to 0.005	3 or 0.0054	\mathbf{A}°	1	4	

4734	Mark Scheme	June 2007
4/34	wark scheme	June Zuu/

((c) ^- (2/200-0.21	D1		6
6	(i) $\hat{p} = 62/200 = 0.31$	B1		aef
	Use $\hat{p}_{\alpha} \pm z \sqrt{\frac{\hat{p}_{\alpha}(1-\hat{p}_{\alpha})}{200}}$	M1		With 200 or 199
	z=1.96	B1		Seen
	Correct variance estimate	A1√		ft \hat{p}
	(0.2459,0.3741)	A1	5	art (0.246,0.374)
	(ii)EITHER: Sample proportion has an approximate normal distribution			
	OR: Variance is an estimate	B1	1	Not \hat{p} is an estimate, unless variance mentioned
	(iii) H_0 : $p_\alpha = p_\beta$, H_1 : $p_\alpha \neq p_\beta$			
	$\hat{p} = (62+35)/(200+150)$	B1		aef
	EITHER: $z=(\pm)\frac{62/200-35/150}{\sqrt{\hat{p}\hat{q}(200^{-1}+150^{-1})}}$	M1		s^2 with, \hat{p} , 200, 150 (or 199, 149)
	·	B 1√		Evidence of correct variance estimate. Ft \hat{p}
	=1.586	A 1		Rounding to 1.58 or 1.59
	(-1.96 <) 1.586 < 1.96	M1		Correct comparison with ± 1.96
	Do not reject H ₀ - there is insufficient evidence of a difference in proportions.	A1		SR: If variance $p_1q_1/n_1+p_2q_2/n_2$ used then: B0M1B0A1(for z=1.61 or 1.62)M1A1 Max 4/6.
	$OR: p_{s\alpha} - p_{s\beta} = zs$	M1		
	$s = \sqrt{(0.277 \times 0.723(200^{-1} + 150^{-1}))}$	B1√		Ft \hat{p}
	CV of $p_{s\alpha}$ - $p_{s\beta}$ = 0.0948 or 0.095	A 1		· r
	Compare $p_{sa} - p_{s\beta} = 0.0767$ with their 0.0948 Do not reject H ₀ and accept that there is insufficient evidence of a difference in	M1		
	proportions	A1		Conditional on z=1.96
	1 1		6	

7 (i) $G(y) = P(Y \le y)$ $= P(X^2 \ge 1/y) [\text{or } P(X > 1/\sqrt{y})]$ $= 1 - F(1/\sqrt{y})$ $= \begin{cases} 0 & y \le 0, \\ y^2 & 0 \le y \le 1, \\ (1 & y > 1.) \end{cases}$	M1 A1 A1		May be implied by following line Accept strict inequalities
(1 y > 1.)	A1	4	Or $F(x)=P(X \le x) = P(Y \ge 1/x^2)$ M1 =1 - $P(Y < 1/x^2)$ A1 =1- $G(y)$;etc A1 A1
(ii) Differentiate their $G(y)$ to obtain $g(y)=2y$ for $0 < y \le 1$ AG obtained	M1	A1	2 Only from G correctly
(iii) $\int_0^1 2y(\sqrt[3]{y}) dy$	M1		Unsimplified, but with limits
$= [6y^{7/3}/7]$ $= {}^{6}/_{7}$	B1 A1	3	OR: Find $f(x)$, $\int_{1}^{\infty} x^{-2/3} f(x) dx$ M1 = $[4x^{-14/3}/(14/3)]$; $\frac{6}{7}$ B1A1 OR: Find H(z), $Z = Y^{1/3}$
8 (i) $P(20 \le y < 25) = \Phi(0) - \Phi(-5/\sqrt{20})$ Multiply by 50 to give 18.41 AG 18.41 for $25 \le y < 30$ and 6.59 for $y < 20$, $y \ge 30$	M1 A1 A1 A1	4	
(ii) H ₀ : N(25,20) fits data $\chi^2 = 3.59^2/6.59 + 8.59^2/18.41 + 6.41^2/18.41 + 1.41^2/6.59$ =8.497	B1 M1√ A1		OR $Y \sim N(25,20)$ ft values from (i) art 8.5
8.497 > 7.815 Accept that N(25,20) is not a good fit	M1 A1	5	
(iii) Use $24.91 \pm z\sqrt{(20/50)}$		M1	With $\sqrt{(20/50)}$
z = 2.326 (23.44,26.38)	B1 A1	3	art (23.4,26.4) Must be interval
(iv) No- Sample size large enough to apply CLT Sample mean will be (approximately) normally	B1		Refer to large sample size
distributed whatever the distribution of Y	B1	2	Refer to normality of sample mean

Mark Scheme 4735 June 2007

Statistics 4

1 (i)	Use $P(A' \cap B') = 1 - P(A \cup B)$ Use $P(A \cap B) = P(A) + P(B) - P(A \cup B)$ = c - 0.1	M1 M1 A1	3	Or $c = 1 - P(A \cup B)$
\ /) $P(B \mid A) = (c - 0.1)/0.3$ Use $0 \le p \le 1$ to obtain $0.1 \le c \le 0.4$ AG	B1√ M1 A1	3	Shown clearly
Us 59 N R _m 40	$m_n = m_s$, H_1 : $m_n \neq m_s$ we Wilcoxon rank sum test $64 \ 68 \ 77 \ 80 \ 85 \ 88 \ 90 \ 98$ $M_1 \ M_2 \ M_3 \ M_4 \ S_3 \ M_5 \ M_5 \ M_6 \ = 4 + 6 + 8 + 9 = 27$ $M_2 = 27 = 13$ $M_3 = 13$	B1 M1 A1 B1		Medians; both hypotheses 'Population medians' if words Rank and identify M0 if normal approx. used
Do diff	ompare correctly with correct CV, !2 not reject H ₀ . There is no evidence of a ference in the median pulse rates of the populations.	M1 A1	7	Quote critical region or state that 13 > 12. M0 if W=27 Conclusion in context.
E(z	Use marginal distributions to obtain X) = -0.4, $E(Y)$ = 1.5 XY) = -0.24 + 0.04 - 0.52 + 0.12 $E(X,Y)$ = -0.6 + 0.6 = 0 AG	M1 A1A M1 A1	1 5	
	P(X = -1 Y = 2) = 0.26/0.5 = 0.52 P(X = 0 Y = 2) = 0.18/0.5 = 0.36 P(X = 1 Y = 2) = 0.12	M1 A1	2	Correct method for any one All correct SR: B1 if no method indicated

4 (i) H_0 : $m = 2.70$, H_1 : $m > 2.7$ Subtract 2.70 from each value and count the number of positive signs Obtain 13 Use $B(20, 1/2)$ to obtain $P(X \ge 13) = 0.1316 (0.132)$ Compare correctly with 0.05 Do not reject H_0 . Conclude that there is insufficient evidence to claim that median level of impurity is greater than 2.70	M1 A1 M1 A1 M1 A1 T	In terms of medians Allow just 'medians' here For finding tail probability Or CR: $X \ge 15$ M1A1 Or: $N(10, 5)$, $p=0.132$
(ii)Wilcoxon signed rank test Advantage: More powerful (uses more formation) Disadvantage: This test requires a symmetric population distribution, not required for sign test	B1 B1 B1 3	Smaller P(Type II) Not 'more time taken'
5 (i) $\int_{0}^{\infty} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x} dx = 1$, result follows	B1 1	
(ii) $M_X(t) = \int_0^\infty \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x} e^{xt} dx$	MI	
$= \int_{0}^{\infty} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x(1 - t)} dx$ $x = u/(1 - t), dx = du/(1 - t) \text{ and limits unchanged}$ $\int_{0}^{\infty} \frac{1}{u^{\alpha - 1}} e^{-u}.$	M1	Attempt to differentiate
$= \int_{0}^{\infty} \frac{1}{(\alpha - 1)!} \frac{u^{\alpha - 1}}{(1 - t)^{\alpha - 1}} \frac{e^{-u}}{1 - t} du$ $= \frac{1}{(\alpha - 1)!(1 - t)^{\alpha}} \int_{0}^{\infty} u^{\alpha - 1} e^{-u} du$	A1 A1	
$= (1-t)^{-\alpha} AG$	A1 5	With evidence
(iii) EITHER: M'(t)= $\alpha(1-t)^{-\alpha-1}$ M''(t)= $\alpha(\alpha+1)(1-t)^{-\alpha-2}$ Substitute $t=0$ E(X) = α Var(X) = $\alpha(\alpha+1) - \alpha^2$	B1 B1 M1 A1	AEF
$= \alpha$ $OR: (1-t)^{-\alpha} = 1 + \alpha t + \frac{1}{2} \alpha(\alpha+1)t^{2} + \dots$ $E(X) = \alpha$ $Var(X) = E(X^{2}) - [E(X)]^{2}$ $= \alpha(\alpha+1) - \alpha^{2}; \alpha$	A1 M1A1 B1 M1 A1A1 6	M0 if t involved

6 (i) <i>q</i> + <i>pt</i>	B1 1	Accept qt^0+pt^1
(ii) $(q+pt)^n (= G_s(t))$ Binomial	B1 B1 2	
(iii) $E(S)=G'(1) = np(q+p)$ = np $Var(S) = G''(1)+G'(1) - [G'(1)]^2$ $= n(n-1)p^2(p+q) + np - n^2p^2$ = npq	M1A1 A1 M1 A1 A1 6	AEF, properly obtained
(iv) $(\frac{1}{2} + \frac{1}{2}t)^{10}e^{-(1-t)}$ Find coefficient of t^2 $(\frac{1}{2})^{10}(1 + 10t + \frac{1}{2} \times 10 \times 9t^2)$ $e^{-1}(1 + t + \frac{1}{2}t^2)$ Required coefficient $= e^{-1}2^{-10}(\frac{1}{2} + 10 + 45)$ = 0.0199	M1 M1 A1 A1 M1 A1 6	Seen May be implied OR: P(Y=0)P(Z=2)+M1, Z is Po(1) M1 Ans:A1A1A1;A1 Not from e ^{-(1-t)} =1-(1-t)+(1-t) ² /2 No more than one term missing
7 (i) $E(T_1) = 2E(\overline{X}) = 2 \times \frac{1}{2}\theta = \theta$ (So T_1 is an unbiased estimator of θ)	M1A1 2	SR: B1 if $\overline{X} = \int_0^\theta \frac{x}{\theta} d\theta$
(ii) $E(U) = \int_0^\theta \frac{nu^n}{\theta^n} du \ \left[\frac{nu^{n+1}}{\theta^n(n+1)} \right]; \frac{n\theta}{n+1}$	M1A1A1	
$E(U^{2}) = \int_{0}^{\theta} \frac{nu^{n+1}}{\theta^{n}} du \qquad ; \qquad \frac{n}{n+2} \theta^{2}$ $Var(U) = E(U^{2}) - [E(U)]^{2}$ $= \frac{n\theta^{2}}{(n+1)^{2}(n+2)} AG$	M1A1 A1 6	
(iii) $\operatorname{Var}(T_2) = \theta^2 / [n(n+2)]$ $\operatorname{Var}(T_1) = 4\operatorname{Var}(X)/n \; ; \; \theta^2/3n$ $\operatorname{Var}(T_2)/\operatorname{Var}(T_1)$	B1 M1A1	For comparison of var. T ₁ , T ₂
$3/(n+2)$ $< 1 \text{ for } n > 1$ So T_2 is more efficient than T_1	M1 M1A1	Idea used.

Mark Scheme 4736 June 2007

SOLUTIONS

4736 D1

June 2007

FINAL

1	(i)	Example: $N-P-Q-T-S-R-N$	Bl		Any valid cycle (closed and does not repeat
1		or: $P-Q-S-P$	l	1	vertices, need not be a Hamiltonian cycle)
1	(ii)	It passes through Y twice	B1	1	Or, it includes a cycle (accept 'loop')
1	(iii)	5	B1	1	
1	(iv)	A: neither	B1		If graphs are not specified, assume A is first
1		B: semi-Eulerian	B1	2	
1	(v)	A: 2	B1		If graphs are not specified, assume A is first
1		B: 1	B1	2	$A: A: B: A \Rightarrow BA \text{ only}$
1	(vi)	There are 4 odd nodes (N, P, S and Z)	Ml	2	Seen or implied
		To connect these we must add 2 arcs	Al	9	For 2

			_		
2	(i)	d+f+g=120	Bl	1	For this equality. Condone an inequality
	(ii)	"(Area of) grass is not more than 4 times (area of)	Bl		Identifying the constraint in words (not just 'grass
		decking"	l	. 1	is less than or equal to 4 times decking' though)
	(iii)	d≤f	B1	1	Do not accept d < f
	(iv)	g ≥ 40	B1		Do not accept g > 40
1		$\min d = 10$	B1		d≥10
		$\min f = 20$	B1	3	f≥ 20
1	(v)	5g + 10d + 20f	Bl		Or any positive multiple of this
1 1		or $g + 2d + 4f$	L	. 1	
	(vi)	Minimise $g + 2d + 4f$	Ml		For a reasonable attempt at setting up the
		Subject to $d+f+g=120$			minimisation problem using their expressions
1		g-4d+s=0	B1		For dealing with this slack variable correctly
1		d-f+t=0			(variables on LHS and constant on RHS)
		$g \ge 40$,	A1	3	For a completely correct formulation (accept d
		and $d \ge 10, f \ge 20, s \ge 0, t \ge 0$		10	and $f \ge 0$, or their min values for d, f)

3	(i)	8 6 9 7 5 Comps Swaps		Bubble sort or decreasing order loses first 4 marks
l	1.,	After 1st pass: 6 8 9 7 5 1 1	MI	1st pass correct
l	1	After 2nd pass: 6 8 9 7 5 1 0	M1	2nd pass correct, follow through from 1st pass
l		After 3rd pass: 6 7 8 9 5 3 2	M1	3rd pass correct, follow through from 2nd pass
		After 4th pass: 5 6 7 8 9 4 4	A1	4th pass correct
		Comparisons must be 1, 2, 3 or 4 with total ≤ 10	ВІ	Counting comparisons for at least three passes
l		Swaps must be 0, 1, 2, 3 or 4 and no more than	Bl	Counting swaps for at least three passes
		corresponding number of comparisons	6	
	(ii)	Step 1 A = 8 6 9 7 5		
ı	'	Step 2 A = 6 9 7 5 X = 8		
1	1	Step 3 A = 9 7 5 B = 6	M1	For identifying that 6 → B or the sublist {6}
1		Step 4 A = 7 5 C = 9	M1	For identifying that 9 → C or the sublist {9}
ı		Step 4 A = 5 B = 6 7	M1	For identifying that 7 → B
1		Step 4 A is empty B = 6 7 5	M1	For identifying that 5 → B
ı		Step 6 N = 3		1 or recentlying that 5 -7 B
l		Step 7 A = 6 7 5 8 9	A1 5	For the final A list or the display correct
ı		Step 8 Display 6 7 5 8 9	11	2 of the lines of the display collect

									_		
4	(i)				,						
1		P	-3	y	5	ı	N .		B1		For correct use of three slack variable columns
1		1	-3	5	0	0	0	0			
		0	1	5	1	0	0	12	Bl		For ± (-3 5) in objective row
		0	1	-5_	0	1	0	10			
1		0	3	10	0	0	1	45	Bl		For 1 5 12, 1-5 10 and 3 10 45 in constraint
1										3	rows
1	(ii)			nd 1 in					B1		For correct pivot choice (cao)
		x colu	nn has	a negat	tive ent	ry in ob	jective	row			For 'negative in top row for x', or equivalent,
		12 + 1	= 12, 1	10 ÷ 1 =	10, 45	+3 = 1	15		B1		and a correct explanation of choice of row 'least
1		Least	non-neg	gative r	atio is l	10 so pi	vot on	the	1		ratio 10 ÷ 1' (ft their pivot column)
		second	11							2	
	(iii)								7		ft their tableau if possible for method marks
1		P	x	y	z	5	t				
		1	0	-10	0	3	0	30	M1		For correct method evident for objective row
1		0	0	10	1	-1	0	2	Ml		For a correct method evident for pivot row
1		0	1	-5	0	1	0	10	M1		For a correct method evident for other rows
1		0	0	25	0	-3	1	15	A1		For correct tableau CAO
1									1		
									١		
		x = 10							B1		For correct values from their tableau
1		P = 30							B1	6	For correct value from their tableau
1	(iv)	11 + 5(0.2) = 12 or s = 0							i		
1		11 - 50				t = 0			l		
				2) = 35		u = 10			B1		For showing (not just stating) that constraints are
		so all t	he con	straints	are sat	isfied					satisfied
1											
				(0.2) =					B1	_2	For calculating 32, or equivalent (eg 3x has
		which	is bigg	er than	30 fror	n (iii)				13	increased by 3 but -5y has only decreased by 1)

5	(i)			ANSWERED ON INSERT
		130 B 9 125	мі	For correct initial temporary labels at F, G, I
		130	M1	For correctly updating F and label at H
		8 100 6 90 7 95 100 90 H I	A1	For all temporary labels correct (including A) (allow extra 100 at C, 105 at D, 75 at H only)
		4 70 2 25 3 65 5 75 90 70 25 65 75	ВІ	For order of becoming permanent correct
		,	В1	For all permanent labels correct (A need not have
		110		a permanent label)
		Shortest path from J to B: J G H E B Length of path: 125 metres	B1 B1 7	For correct route (condone omission of J or B) For 125
1	(ii)	Odd nodes: B C E J	B1	For identifying or using B C E J or implied
		BC = 60 $BE = 35$ $BJ = 125EJ = \underline{90} CJ = \underline{95} CE = \underline{70}150$ 130 195	м1	For any three of these weights correct, or implied or ft from their (i)
1		Repeat BE and CJ (or BE, JI, IC)	Al	For identifying the pairing BE, CJ to repeat or 130 (not ft)
		130 + 765 Shortest route: 895 metres	M1 A1 5	For 765 + their 130 (a valid pairs total) For 895 (cao)
	(iii)	A 40 B		
		30 35 60 35	В1	For graph structure correct
		30 E 25 C 20	м1	For a reasonable attempt at arc weights (at least 9 correct, including the three given)
		90 25 75	Al	For all arc weights correct
		,	4	
<u></u>		Travelling salesperson problem	B1 16	For identifying TSP by name

6	(i)			ANSWERED ON INSERT		
1		1 5 2 4 3 6				
1		A B C D E F				
		1 - 6 3	M1	For choosing row C in column A		
1		B 6 - 5 6 - 14				
1		3 0 - 14		F		
1		C 3 5 - 8 4 10	M1 dep	For choosing more than one entry from column C		
1		D - 6 8 - 3 8				
1		E 4 3	A1	For correct entries chosen		
		F - 14 10 8				
1			.			
1		Order: A C E D B F	B1	For correct order, listed or marked on arrows or table, or arcs listed AC CE ED CB DF		
1		Minimumi 4		table, or ares listed ACCEEDCBDF		
1		Minimum spanning tree:				
		A P	В1	For tree (correct or follow through from table, provided solution forms a spanning tree)		
1 1		A C E F				
		Total weight: 23 miles	Bl	For 23 (or follow through from table or diagram,		
			6	provided solution forms a spanning free/		
	(ii)	MST for reduced network = 18	MI	For their 18 seen or implied		
		Two shortest arcs from $B = 5 + 6 = 11$	M1	For 11 seen or implied		
		Lower bound = 29 miles	A1 3	For 29 (cao)		
	(iii)	F-D-E-C-A-B-F	MI	For F-D-E-C-A-B		
			Al	For correct tour		
		8+3+4+3+6+14	M1 4	For a substantially correct attempt at sum		
		= 38 miles	A1 13	For 38 (cao)		

Mark Scheme 4737 June 2007

SOLUTIONS

4737 D2

June 2007

FINAL

1	(i)		house	l house 2	house 3	house 4			
		Α	500	400	700	600	B1		For copying the table, with row and column
		В	300	200	400	350	1		headings (accept consistent scalings)
		C	500	300	750	680	В1	2	For dummy row (Daniel) with all equal values
1		D	uce rows	0	0	0	- B1	. .	For dummy row (Danier) with all equal values
1	(ii)	Kedi	ace rows	•			1		
				100	0 300	200	MI		For a substantially correct attempt at reducing
				100	0 200	150			rows and columns
					0 450	380			
1				0	0 0	0	A1		For correct reduced cost matrix (ft scalings)
1 1		Calu		already red	lunad		1	2	Do not treat as MR
				ing two line			·}		
		1	o out us	mg two mic	Ĭ				
				100	300	200			
1				100	200	150	MI		For covering zeros using minimum number of
1			_	200	450	380			lines, clearly seen or implied from augmenting
		١.	→ 1	NEW GRAD	J. Ashralas	AUGUS EI			
		Aug	ment by	100			MI	dep	For a single augmentation by 100 (ft their matrix)
1					. 200	***			(accept either way of augmenting by 100)
1 1		ì		-	0 200 0 100	100 50	Al	ft	For a correct augmented matrix (ft their matrix)
				-	0 350	280	1		To a contest augmented manne (it men manne)
1					00 0	0		3	
1	(ii)	Cros	s out us	ing three lin	es		1		
				<u> </u>	↓ •	***	\		F
			62		200 100	100 50	MI		For covering zeros using minimum number of lines a second time, clearly seen or implied from
1				16	350	280			augmenting
1		١.	→ 📕	1	0.0000000000000000000000000000000000000	200	1		
1			_						
1		Aug	ment by	50			1		
1							MI	dep	For a single augmentation by 50 (ft their matrix) (accept either way of augmenting by 50)
				-	0 150 0 50	50 0	1		(accept cities way of augmenting by 50)
					0 300	230	Al	ft	For a correct augmented matrix (ft their matrix)
					50 0	0			
		Com	plete ma	atching					
				0	0 150	50			
				_	0 50	0	ВІ		For a complete matching achieved, must follow
					0 300	230	1		from an attempt at reducing or augmenting a
				50 1	50 0	0			matrix, not just implied from a list of the
				,	······			. 4	matching
	(iii)	Alle		should c		-	р.		F 4 - 1 P - 4 C - 2 / - 1 - 1 - 2 - 2 - 2
		Clea	htenupp n41!	should c			В1	2	For A = 1, B = 4, C = 2 (may also list D = 3) cao
			m40 = £115(rean nouse		В1	13	For 1150 cao
		Cost	21130				DI	13	roi 1130 cao

2	(i)	4p - (1-p)	M1		For $4p - 1(1-p)$ or equivalent, seen or implied	
1~	(,,	= 5p - 1	Al			cao
1		- 3p - 1	~		1015p=101-1.5p	·wo
ı		-2p + 5(1-p) = 5 - 7p	В1		For any form of this expression	cao
1		4(1-p) = 4 - 4p	BI	- 4	l = ' a a ' .	cao
1		4(1-2) - 4 - 42				
1	(ii)	E	MI		For correct structure to graph with a horizontal	
1		5	MI		axis that extends from 0 to 1, but not more that	n
1		4			this, and with consistent scales.	
1					F1' F6- 1-l-m-16 (0.1) to (1.4)	.
1			A1	ft	For line $E = 5p - 1$ plotted from $(0,-1)$ to $(1,4)$	
1		0	Al	π	For line $E = 5 - 7p$ plotted from $(0, 5)$ to $(1, -2)$	
1			Al	ft	For line $E = 4 - 4p$ plotted from $(0, 4)$ to $(1, 0)$	'
1						
1				4	In all three cases, correct or ft from (i)	
1		p = 0.5	BI	1	For this or ft their graph	
ı	(iii)	5(0.5) – 1	MI		For substituting their p into any of their equati	ons
1					(must be seen, cannot be implied from value)	
1		= 1.5 points per game	Al		For 1.5	cao
l		Bea may not play her best strategy	B1		For this or equivalent	
1		, , , , , , , , , , , , , , , , , , , ,		3	Describing a mixed strategy that involves Z	
ı	(iv)	1.5	B1	ft	Accept -1.5, ft from (iii)	
1	(,	If Amy plays using her optimal strategy,			(,	
1		Bea should never play strategy Z	MI		For identifying that she should not play Z	
1		Assuming that Bea knows that Amy will make a			,	
1		random choice between P and Q so that each has			For a full description of how she should play	
1		probablility 0.5, it does not matter how she chooses			To a ran description of now site should play	
ı		between strategies X and Y.			(If the candidate assumes that Bea does not	know
1		The state of the s		-	_	
					then Bea should play P with probability $\frac{7}{12}$ an	a
I				3	Q with probability $\frac{5}{12}$).	
1				15	2 12,	
				10		_

3 (i)	A B E B	M1	A substantially correct network Condone arrows missing or wrong way round, no end and/or extra dummies Do NOT allow activity on node formulation A correct network, with arrows on at least the dummy activities, with no extra dummies and a single end point.
	A dummy is needed after C because D follows both B and C.	В1	A valid explanation
1	A dummy is needed after D because F and G both follow D .	B1 4	A valid explanation
(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MI Al MI Al	A substantially correct forward pass Early event times correct (ft their network if possible) A substantially correct backwards pass Late event times correct (ft their network if possible)
	Minimum completion time = 14 days Critical activities are A, C, D, F	B1 B1	For 14 cao For these four activities and no others cao
(iii)	4 workers 2 0 0 2 4 6 8 10 12 14 days	M1 M1 dep	In both cases these need to be stated, not implied from the diagram For a reasonable attempt at using the number of workers for the different activities Scales and labels required and some days with 4 workers. For a reasonable attempt with no overhanging blocks
	Farmer barrer well of a Charles faithed as and	A1 3	For an entirely correct histogram Earliest finish for E > latest start for F
(iv)	E cannot happen until after C has finished so must overlap with F. Start E immediately after C but delay the start of	B1 _2	For delaying the start of F (by 1 day)
	F for 1 day (until after E has finished).	15	

4	(i)	stage	state	action	working	minimax	1	ANSWERED ON INSERT		
ı		$\overline{}$	0	0	4	4	1	Values only credited when seen in table		
1		1	1	0	3	3	1	values only electrica when seen in table		
ì	l	1	2	0	2	2	1			
1		$\overline{}$		0	max(6,4) = 6		1			
l	l	l	0	1	max(2,3) = 3	3				
1		1		2	max(3,2) = 3					
1	i	l		0	max(2,4) = 4		м1	For calculating the maxima as 4, 4, 5		
1	- 1	2	1	1	max(4,3) = 4	4	A1 2	For calculating the minimax as 4		
1		ı		2	max(5,2) = 5		R1	For completing 4, 3, 2 in the brackets		
1	- 1	l		0	$\max(2,4) = 4$	3	мı	For calculating the maxima as 4, 3, 4 (method)		
1	ľ	ì	2	1	max(3,3) = 3		A1 3	For calculating the minimax as 3 cao		
1				2	max(4,2) = 4		B1	For using their minimax values from stage 2		
1		Ι.		0	max(5,3) = 5		МI	For calculating the maxima for their values		
1		3	0	1	$\max(5,4) = 5$		A1 .	For calculating the maxima as 5, 5, 3 cao		
ı		L		2	$\max(2,3) = 3$	3	A1 4	For calculating the minimax as 3 cao		
1	(ii)	3				- 1	M1 A1	For the value from their tabulation For 3 (irrespective of their tabulation) cao		
ı	- 1	3					M1 dep	For reading route from their tabulation		
1		(0; 0) - (1; 1) - (2	2; 2) - (3; 0) (or in rev	erse)	A1 4	For this route (irrespective of their tabulation) cao		
	(iii)		(2; 0)	5 2 3	(1; 0)		ВІ	For the graph structure correct		
	Ì	(3; 0)	(2;	**X	(1; 1)	(0; 0)	Ml	For a substantially correct attempt at the weights (no more than two definite errors or omissions)		
			(2; 2)	<u> </u>	2 (1; 2)		A1 3 16	For weights unambiguously correct		

5	(i)				ANSWERED ON INSERT
ľ	(,)	S – E – I - T	Bl	1	For this route (not in reverse) cao
ł	(ii)	6 litres per second	B1		For 6
1	()	From A to G	Bl	2	For direction AG
1	(iii)	6+2+4+0+8	MI		For a substantially correct attempt with $DF = 0$
1	` '		MI		For dealing with EI (= 8 or = 2 + 6)
1		= 20 litres per second	A1	3	For 20 cao
ı		·			Method marks may be implied from answer
1	(iv)	eg flow 5 along $S - A - G - T$	Ml		For describing a valid flow augmenting route
1		and 2 along $S-C-F-H-G-T$	A1	2	For correctly flowing 7 from S to T
1					
1		Diagram correctly augmented	MI		For a reasonable attempt at augmenting a flow
ı			MI		For correctly augmenting a flow
1			A1	3	For a correct augmentation by a total of 7
1					
1		Cut {S, A, B, C, D, E, F, G, H, I}, {T}	B1		For identifying cut or arcs GT and IT
1					
1		This cut has a value of 13 and the flow already	Bl		For explaining how this shows that the flow is a
1		found is 6 + 7 = 13 litres per second.			maximum,
1		Or		_	but NOT just stating max flow = min cut
1		This is the maximum flow since the arcs GT and		_2	
		IT are both saturated, so no more can flow into T.		13	

Advanced GCE Mathematics (3892 – 2, 7890 - 2) June 2007 Assessment Series

Unit Threshold Marks

	Unit	Maximum Mark	а	b	С	d	е	u
4721	Raw	72	60	52	44	36	29	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	61	54	47	40	33	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	54	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	60	53	46	39	33	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	59	51	44	37	30	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	62	54	46	38	31	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	51	43	36	29	22	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	55	48	42	36	30	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0

4734	Raw	72	56	49	42	36	30	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	60	51	43	35	27	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	62	55	48	42	36	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	53	46	39	32	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	В	С	D	E	U
3890/3891/3892	300	240	210	180	150	120	0
7890/7891/7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	31.2	47.9	62.0	74.4	84.9	100	13873
3891	20.0	20.0	20.0	20.0	20.0	100	10
3892	58.5	75.6	87.9	94.7	97.5	100	1384
7890	45.3	66.9	82.2	92.4	97.7	100	9663
7891	0	0	0	100	100	100	1
7892	58.2	78.1	89.1	96.0	98.8	100	1487

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam system/understand ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

