

GCE

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2007

3890-2/7890-2/MS/R/07J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:0870 870 6621E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	11
4724	Core Mathematics 4	15
4725	Further Pure Mathematics 1	19
4726	Further Pure Mathematics 2	25
4727	Further Pure Mathematics 3	29
4728	Mechanics 1	35
4729	Mechanics 2	41
4730	Mechanics 3	45
4732	Probability & Statistics 1	49
4733	Probability & Statistics 2	53
4734	Probability & Statistics 3	57
4736	Decision Mathematics 1	61
4737	Decision Mathematics 2	67
*	Grade Thresholds	72

Mark Scheme 4721 January 2007

1	$\frac{5}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$ $= \frac{5(2 + \sqrt{3})}{4 - 3}$ $= 10 + 5\sqrt{3}$	M1 A1 A1	3 3	Multiply top and bottom by $\pm (2 + \sqrt{3})$ $(2 + \sqrt{3})(2 - \sqrt{3}) = 1$ (may be implied) $10 + 5\sqrt{3}$
2(i)	1	B1	1	
(ii)	$\frac{1}{2} \times 2^4$	M1		$2^{-1} = \frac{1}{2} \mathbf{or} 32^{\frac{1}{5}} = 2 \mathbf{or} 2^{5} = 32$ soi
		M1		$32^{\frac{4}{5}} = 2^4$ or 16 seen or implied
	= 8	A1	3 4	8
3(i)	$3x - 15 \le 24$ $3x \le 39$	M1		Attempt to simplify expression by multiplying out brackets
	<i>x</i> ≤13	A1	2	<i>x</i> ≤ 13
	or $x-5 \le 8$ M1 $x \le 13$ A1			Attempt to simplify expression by dividing through by 3
(ii)	$5x^2 > 80$ $x^2 > 16$ x > 4	M1 B1		Attempt to rearrange inequality or equation to combine the constant terms x > 4
	or $x < -4$	A1	3	fully correct, not wrapped, not 'and'
			-	SR B1 for $x \ge 4$, $x \le -4$
			5	

	1		
4	Let $y = x^{\overline{3}}$	*M1	Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket
	$y^2 + 3y - 10 = 0$		
	(y-2)(y+5) = 0	DM1	Correct attempt to solve quadratic
	y = 2, y = -5	A1	Both values correct
	$x = 2^3, x = (-5)^3$	DM1	Attempt cube
	x = 8, x = -125	A1 ft 5	Both answers correctly followed through
		5	SR B2 $x = 8$ from T & I
5 (i)		M1	Reflection in either axis
		A1 2	Correct reflection in x axis
(ii)	(1,3)	B1 B1 2	Correct x coordinate Correct y coordinate
			SR B1 for (3, 1)
(iii)	Translation 2 units in negative x direction	B1 B1 2 6	
		Ŭ	
6 (i)	$2(x^{2} - 12x + 40)$ = 2[(x - 6) ² - 36 + 40]	B1	<i>a</i> = 2
	$=2[(x-6)^2-36+40]$	B1	b = 6
	$=2[(x-6)^2+4]$	M1	$80-2b^2$ or $40-b^2$ or $80-b^2$ or $40-2b^2$ (their b)
	$=2(x-6)^2+8$	A1 4	c = 8
(ii)	x = 6	B1 ft 1	
(iii)	<i>y</i> = 8	B1 ft 1	
		6	

7(i)	$\frac{dy}{dx} = 5$ $y = 2x^{-2}$	B1 1	
(ii)	$y = 2x^{-2}$	B1	x^{-2} soi
	$y = 2x$ $\frac{dy}{dx} = -4x^{-3}$	B1	$x^{-2} \operatorname{soi} -4x^{c}$ kx^{-3}
	dx	B1 3	kx^{-3}
(iii)	$y = 10x^{2} - 14x + 5x - 7$ $y = 10x^{2} - 9x - 7$	M1 A1	Expand the brackets to give an expression of form $ax^2 + bx + c$ ($a \neq 0, b \neq 0, c \neq 0$) Completely correct (allow 2 <i>x</i> -terms)
	$\frac{dy}{dx} = 20x - 9$	B1 ft B1 ft 4	1 term correctly differentiated Completely correct (2 terms)
		8	
8 (i)	$\frac{dy}{dx} = 9 - 6x - 3x^2$	*M1	Attempt to differentiate y or $-y$ (at least one correct term)
	u.r.	A1	3 correct terms
	At stationary points, $9 - 6x - 3x^2 = 0$	M1	Use of $\frac{dy}{dx} = 0$ (for y or $-y$)
	3(3+x)(1-x) = 0 x = -3 or x = 1	DM1 A1	Correct method to solve 3 term quadratic $x = -3$, 1
	y = 0, 32	Alft 6	y = 0, 32 (1 correct pair www A1 A0)
(ii)	$\frac{d^2 y}{dx^2} = -6x - 6$	M1	Looks at sign of $\frac{d^2 y}{dx^2}$, derived correctly
			from $k \frac{dy}{dx}$, or other correct method
	When $x = -3$, $\frac{d^2 y}{dx^2} > 0$	A1	x = -3 minimum
	When $x = 1, \frac{d^2 y}{dx^2} < 0$	A1 3	x = 1 maximum
(iii)	-3 < x < 1	M1	Uses the x values of both turning points in inequality/inequalities
		A1 2	Correct inequality or inequalities. Allow \leq
		11	

9 (i)	Gradient = 4	B1	Gradient of 4 soi
	y - 7 = 4(x - 2)	M1	Attempts equation of straight line through (2, 7) with any gradient
	y = 4x - 1	A1 3	(_, /)
(ii)	$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ = $\sqrt{(2 - 1)^2 + (7 - 2)^2}$	M1	Use of correct formula for d or d^2 (3 values correctly substituted)
	$=\sqrt{3^2+9^2}$	A1	$\sqrt{3^2 + 9^2}$
	$= \sqrt{90}$ $= 3\sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of $AB = 3$	B1	
	Gradient of perpendicular line = $-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	Midpoint of AB = $\left(\frac{1}{2}, \frac{5}{2}\right)$	B1	
	$y - \frac{5}{2} = -\frac{1}{3}\left(x - \frac{1}{2}\right)$	M1	Attempts equation of straight line through their midpoint with any non-zero gradient
	x + 3y - 8 = 0	A1	$y - \frac{5}{2} = \frac{-1}{3} \left(x - \frac{1}{2} \right)$
		A1 6	x + 3y - 8 = 0
		12	

10 (i)	Centre (-1, 2) (x + 1) ² - 1 + (y - 2) ² - 4 - 8 = 0	B1 M1		Correct centre Attempt at completing the square
	$(x + 1)^{2} + (y - 2)^{2} = 13$ Radius $\sqrt{13}$	A1	3	Correct radius
				Alternative method:Centre (-g, -f) is (-1, 2)B1 $g^2 + f^2 - c$ M1Radius = $\sqrt{13}$ A1
(ii)	$(2)^{2} + (k-2)^{2} = 13$ $(k-2)^{2} = 9$ $k-2 = \pm 3$ k = -1	M1 M1 A1	3	Attempt to substitute $x = -3$ into circle equation Correct method to solve quadratic k = -1 (negative value chosen)
(iii)	EITHER y = 6 - x $(x + 1)^2 + (6 - x - 2)^2 = 13$ $(x + 1)^2 + (4 - x)^2 = 13$ $x^2 + 2x + 1 + 16 - 8x + x^2 = 13$ $2x^2 - 6x + 4 = 0$ 2(x - 1)(x - 2) = 0	M1 M1 A1 M1		Attempt to solve equations simultaneously Substitute into their circle equation for x/y or attempt to get an equation in 1 variable only Obtain correct 3 term quadratic Correct method to solve quadratic of form $ax^2 + bx + c = 0$ ($b \neq 0$)
	x = 1, 2 $\therefore y = 5, 4$	A1 A1	6	Both x values correct Both y values correct <u>or</u> one correct pair of values www B1
	OR x = 6 - y $(6 - y + 1)^2 + (y - 2)^2 = 13$ $(7 - y)^2 + (y - 2)^2 = 13$ $49 - 14y + y^2 + y^2 - 4y + 4 = 13$ $2y^2 - 18y + 40 = 0$ 2(y - 4)(y - 5) = 0 y = 4, 5 $\therefore x = 2, 1$			second correct pair of values B1 SR <u>T & I</u> M1 A1 One correct <i>x</i> (or <i>y</i>) value A1 Correct associated coordinate
			12	

Mark Scheme 4722 January 2007 4722

Mark Scheme

Her $S_n =$	$ + 19d = 72 for equation d = 3 = {}^{100}/_2 \{(2 \times 15) + (99 \times 3)\} = 16350$	M1 A1 M1 A1	4	Attempt to find d, from $a + (n - 1)d$ or $a + nd$ Obtain $d = 3$ Use correct formula for sum of n terms Obtain 16350
			4	
	$46 \times \frac{\pi}{180} = 0.802 / 0.803$	M1		Attempt to convert to radians using π and 180 (or 2π &
360)		A1	2	Obtain 0.802 / 0.803, or better
(ii)	$8 \ge 0.803 = 6.4 \text{ cm}$	B1	1	State 6.4, or better
()	$\frac{1}{2} \times 8^2 \times 0.803 = 25.6 / 25.7 \text{ cm}^2$	M1		Attempt area of sector using $\frac{1}{2}r^2\theta$ or $r^2\theta$, with θ in
radians		A1	2	Obtain 25.6 / 25.7, or better
			5	
3 (i)	$\int (4x-5)\mathrm{d}x = 2x^2 - 5x + c$	M1		Obtain at least one correct term
		A1	2	Obtain at least $2x^2 - 5x$
(ii)	$y = 2x^{2} - 5x + c$ $7 = 2 \times 3^{2} - 5 \times 3 + c \Longrightarrow c = 4$	B1√ M1		State or imply $y =$ their integral from (i) Use (3,7) to evaluate c
	So equation is $y = 2x^2 - 5x + 4$	A1	3	Correct final equation
			5	
4 (i)	area = $\frac{1}{2} \times 5\sqrt{2} \times 8 \times \sin 60^\circ$	B1		State or imply that $\sin 60^\circ = \frac{\sqrt{3}}{2}$ or exact equiv
	$= \frac{1}{2} \times 5\sqrt{2} \times 8 \times \frac{\sqrt{3}}{2}$	M1		Use $\frac{1}{2}ac\sin B$
	$=10\sqrt{6}$	A1	3	Obtain $10\sqrt{6}$ only, from working in surds
(ii)	$AC^{2} = (5\sqrt{2})^{2} + 8^{2} - 2 \times 5\sqrt{2} \times 8 \times \cos 60^{\circ}$	M1		Attempt to use the correct cosine formula
	AC = 7.58 cm	A1 A1	3	Correct unsimplified expression for AC^2 Obtain $AC = 7.58$, or better
	<i>AC</i> 7.56 cm			
			6	
5 (a)	(i) $\log_3 \frac{4x+7}{x}$	B1	1	Correct single logarithm, as final answer, from correct working only
	(ii) $\log_3 \frac{4x+7}{x} = 2$			working only
	$\frac{4x+7}{x} = 9$	B1		State or imply $2 = \log_3 9$
	4x + 7 = 9x	M1		Attempt to solve equation of form $f(x) = 8$ or 9
	x = 1.4	A1	3	Obtain $x = 1.4$, or exact equiv
(b)	$\int_{3}^{9} \log_{10} x dx \approx \frac{1}{2} \times 3 \times (\log_{10} 3 + 2\log_{10} 6 + \log_{10} 9)$	B1		State, or imply, the 3 correct <i>y</i> -values only
	≈ 4.48	M1		Attempt to use correct trapezium rule
		A1 A1	4	Obtain correct unsimplified expression Obtain 4.48, or better
			8	
			-	

4722

6	(i)	$(1+4x)^7 = 1+28x+336x^2+2240x^3$	B1		Obtain $1 + 28x$
			M1		Attempt binomial expansion of at least 1 more term, with each term the product of binomial coeff and power of $4x$
			A1		Obtain $336x^2$
			A1	4	Obtain $2240x^3$
	(ii)	28a + 1008 = 1001	M1		Multiply together two relevant pairs of terms
		Hence $a = -\frac{1}{4}$	$A1\sqrt{A1}$	3	Obtain $28a + 1008 = 1001$ Obtain $a = -\frac{1}{4}$
				-	
				7	
7	(i)	(a)	B1	•	Correct shape of $k \cos x$ graph
		+	B1	2	(90, 0), (270, 0) and (0, 2) stated or implied
		(b) $\cos x = 0.4$	M1		Divide by 2, and attempt to solve for x
		$x = 66.4^{\circ}, 294^{\circ}$	A1		Correct answer of 66.4° / 1.16 rads
			A1√	3	Second correct answer only, in degrees, following their x
	(ii)	$\tan x = 2$	M1		Use of $\tan x = \frac{\sin x}{\cos x}$ (or square and use $\sin^2 x + \cos^2 x \equiv 1$)
		$x = 63.4^{\circ}, -117^{\circ}$	A1 A1√	3	Correct answer of 63.4° / 1.56 rads Second correct answer only, in degrees, following their x
				5	Second correct answer only, in degrees, following their x
				8	
8	(i)	-8 - 36 - 14 + 33 = -25	M1 A1	2	Substitute $x = -2$, or attempt complete division by $(x + 2)$ Obtain -25 , as final answer
	(ii)	27 - 81 + 21 + 33 = 0 A.G.	B1	1	Confirm $f(3) = 0$, or equiv using division
	(iii)	<i>x</i> = 3	B1		State $x = 3$ as a root at any point
		$f(x) = (x-3)(x^2 - 6x - 11)$	M1 A1		Attempt complete division by $(x - 3)$ or equiv Obtain $x^2 - 6x + k$
			Al		Obtain completely correct quotient
		$x = \frac{6 \pm \sqrt{36 + 44}}{2}$	M1		Attempt use of quadratic formula, or equiv, to find roots
		$= 3 \pm 2\sqrt{5}$ or $3 \pm \sqrt{20}$	A1	6	Obtain $3 \pm 2\sqrt{5}$ or $3 \pm \sqrt{20}$
				9	
9	(i)	$u_5 = 1.5 \times 1.02^4$	M1		Use $1.5r^4$, or find u_2 , u_3 , u_4
		= 1.624 tonnes A.G.	A1	2	Obtain 1.624 or better
	(ii)	$\frac{1.5(1.02^N - 1)}{1.02 - 1} \le 39$	MI		Lice correct formula for S
	(11)	$\frac{1.02-1}{1.02-1} \le 39$	M1		Use correct formula for S_N
		$(1, 22^{N}, 1)$, $(22, 2, 22, 1, 5)$	A1 M1		Correct unsimplified expressions for S_N Link S_N to 39 and attempt to rearrange
		$(1.02^{N} - 1) \le (39 \times 0.02 \div 1.5)$ $(1.02^{N} - 1) \le 0.52$			Link S_N to 59 and attempt to rearrange
		Hence $1.02^N \le 1.52$	A1	4	Obtain given inequality convincingly, with no sign errors
	(iii)	$\log 1.02^N \le \log 1.52$	M1		Introduce logarithms on both sides and use $\log a^b = b \log b$
	、 ,	$N\log 1.02 \leq \log 1.52$	A1		Obtain $N \log 1.02 \le \log 1.52$ (ignore linking sign)
		$N \le 21.144$ N = 21 trips	M1 A1	4	Attempt to solve for N Obtain $N = 21$ only
		., 21 uipo		-1	Country 21 only
				10	

10	(i)	$0 = 1 - \frac{3}{\sqrt{9}}$	B1	1	Verification of $(9, 0)$, with at least one step shown
	(ii)	$\int_{0}^{a} 1 - 3x^{-\frac{1}{2}} dx = \left[x - 6\sqrt{x} \right]_{0}^{a}$	M1		Attempt integration – increase in power for at least 1 term
		$= (a - 6\sqrt{a}) - (9 - 6\sqrt{9})$ $= a - 6\sqrt{a} + 9$	A1 A1 M1 A1		For second term of form $kx^{\frac{1}{2}}$ For correct integral Attempt F(a) – F(9) Obtain $a - 6\sqrt{a} + 9$
		$a-6\sqrt{a}+9 = 4$ $a-6\sqrt{a}+5 = 0$ $(\sqrt{a}-1)(\sqrt{a}-5) = 0$	M1 M1		Equate expression for area to 4 Attempt to solve 'disguised' quadratic
		$\sqrt{a} = 1, \sqrt{a} = 5$ a = 1, a = 25 but $a > 9$, so $a = 25$	A1 A1	9	Obtain at least $\sqrt{a} = 5$ Obtain $a = 25$ only
				10	

Mark Scheme 4723 January 2007

1	Attempt use of quotient rule to find derivative M	allow for numerator 'wrong way round'; or attempt use of product rule
	Obtain $\frac{2(3x-1) - 3(2x+1)}{(3x-1)^2}$ A1	
	Obtain $-\frac{5}{4}$ for gradient A1	or equiv
	Attempt eqn of straight line with numerical gradient	M1 obtained from their $\frac{dy}{dx}$; tangent not normal
	Obtain $5x + 4y - 11 = 0$ A1	
2 (i)	Attempt complete method for finding $\cot \theta$ Obtain $\frac{5}{12}$	M1 rt-angled triangle, identities, calculator, A1 2 or exact equiv
(ii)	Attempt relevant identity for $\cos 2\theta$	M1 $\pm 2\cos^2\theta \pm 1$ or $\pm 1 \pm 2\sin^2\theta$ or $\pm (\cos^2\theta - \sin^2\theta)$
	State correct identity with correct value(s) substitute Obtain $-\frac{119}{169}$	
3 (a)	Sketch reasonable attempt at $y = x^5$	*B1 accept non-zero gradient at <i>O</i> but curvature to be correct in first and third quadrants
	Sketch straight line with negative gradient Indicate in some way single point of intersection B1	*B1 existing at least in (part of) first quadrant
(b)	Obtain correct first iterate Carry out process to find at least 3 iterates in all M Obtain at least 1 correct iterate after the first A1	
	Conclude 2.175 $[0 \rightarrow 2.21236 \rightarrow 2.17412 \rightarrow 2.1744]$ $1 \rightarrow 2.19540 \rightarrow 2.17442 \rightarrow 2.1744]$ $2 \rightarrow 2.17791 \rightarrow 2.17473 \rightarrow 2.1747]$ $3 \rightarrow 2.15983 \rightarrow 2.17506 \rightarrow 2.1747]$	4 answer required to precisely 3 d.p. $80 \rightarrow 2.17479;$ $80 \rightarrow 2.17479;$ $79 \rightarrow 2.17479;$
4 (i)	Obtain derivative of form $k(4t+9)^{-\frac{1}{2}}$ M	any constant k
	Obtain correct $2(4t+9)^{-\frac{1}{2}}$ A1	or (unsimplified) equiv
	Obtain derivative of form $k e^{\frac{1}{2}x+1}$ M	any constant k different from 6
	Obtain correct $3e^{\frac{1}{2}x+1}$ A1	4 or equiv
(ii)		merical or algebraic ng $t = 4$ and calculated value of x 3 allow ± 0.1 ; allow greater accuracy
	<u>Or</u> : Obtain $k(4t+9)^n e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$ M	differentiating $y = 6e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$
	Obtain correct $6(4t+9)^{-\frac{1}{2}}e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$ A1	or equiv
_	Substitute $t = 4$ to obtain 39.7 A1 (3) all	tow ± 0.1 ; allow greater accuracy
5 (i)	Obtain $R = \sqrt{17}$ or 4.12 or 4.1B1Attempt recognisable process for finding α M1	8
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
		12

4723

4723

Jan 2007

(ii)	Attempt to find at least one value of $\theta + \alpha$ Obtain or imply value 61 Obtain 46.9 Show correct process for obtaining second angle Obtain -75	M1 A1√ A1 M1 A1	5	following <i>R</i> value; or value rounding to 61 allow ±0.1; allow greater accuracy allow ±0.1; allow greater accuracy; max of 4/5 if extra angles between –180 and 180
6 (i)	Obtain integral of form $k(3x+2)^{\frac{1}{2}}$	M1		any constant k
	Obtain correct $\frac{2}{3}(3x+2)^{\frac{1}{2}}$	A1		or equiv
	Substitute limits 0 and 2 and attempt evaluation	M1		for integral of form $k(3x+2)^n$
	Obtain $\frac{2}{3}(8^{\frac{1}{2}}-2^{\frac{1}{2}})$	A1	4	or exact equiv suitably simplified
(ii)	State or imply $\pi \int \frac{1}{3x+2} dx$ or unsimplified vers	sion		B1 allow if dx absent or wrong
	Obtain integral of form $k \ln(3x + 2)$ Obtain $\frac{1}{3}\pi \ln(3x + 2)$ or $\frac{1}{3}\ln(3x + 2)$	M1 A1		any constant k involving π or not
	Show correct use of $\ln a - \ln b$ property M1 Obtain $\frac{1}{3}\pi \ln 4$	A1	5	or (similarly simplified) equiv
7 (i)	State <i>a</i> in <i>x</i> -direction State factor 2 in <i>x</i> -direction	B1 B1	2	or clear equiv or clear equiv
(ii)	Show (largely) increasing function crossing <i>x</i> -ax Show curve in first and fourth quadrants only	tis A1	2	M1 with correct curvature not touching <i>y</i> -axis and with no maximum point; ignore intercept
(iii)	Show attempt at reflecting negative part in <i>x</i> -axis Show (more or less) correct graph	S		M1 A1 $\sqrt{2}$ following their graph in (ii) and showing correct curvatures
(iv)	Identify 2 <i>a</i> as asymptote or $2a + 2$ as intercept State $2a < x \le 2a + 2$	B1 B1	2	allow anywhere in question allow $<$ or \le for each inequality
8 (i)	Obtain $-2x e^{-x^2}$ as derivative of e^{-x^2} Attempt product ruleObtain $8x^7 e^{-x^2} - 2x^9 e^{-x^2}$ Either:Equate first derivative to zero and attempt solution Confirm 2Or:Substitute 2 into derivative and show attempt at evaluation	B1 *M1 A1 M1 A1		allow if sign errors or no chain rule or (unsimplified) equiv dep *M; taking at least one step of solution AG
	Obtain 0	A1	(5)	AG; necessary correct detail required

(ii) Attempt calculation involving attempts at y values M1 with each of 1, 4, 2 present at least once as coefficients with attempts at five y values corresponding Attempt $k(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$ M1 to correct x values Obtain $\frac{1}{6}(0 + 4 \times 0.00304 + 2 \times 0.36788)$ or equiv with at least 3 d.p. or exact values $+4 \times 2.70127 + 4.68880$) A1 Obtain 2.707 4 or greater accuracy; allow ± 0.001 A1 (iii) Attempt 4(y value) - 2(part (ii))M1 or equiv Obtain 13.3 A1 **2** or greater accuracy; allow ± 0.1 allow <; any notation 9 (i) State $-2 \le y \le 2$ B1 State $y \le 4$ **B**1 **2** allow <; any notation (ii) Show correct process for composition M1 right way round Obtain or imply 0.959 and hence 2.16 AG; necessary detail required A1 Obtain g(0.5) = 3.5or (unsimplified) equiv B1 Observe that 3.5 not in domain of f B1 4 or equiv (iii) Relate quadratic expression to at least one end of range of f M1 or equiv Obtain both of $4 - 2x^2 < -2$ and $4 - 2x^2 > 2$ A1 or equiv; allow any sign in each ($< \text{ or } \le \text{ or } >$ or \geq or =) Obtain at least two of the x values $-\sqrt{3}$, -1, 1, $\sqrt{3}$ A1 Obtain all four of the *x* values A1 Attempt solution involving four *x* values M1 to produce at least two sets of values Obtain $x < -\sqrt{3}$, -1 < x < 1, $x > \sqrt{3}$ A1 6 allow \leq instead of < and/or \geq instead of >

Mark Scheme

Jan 2007

4723

Mark Scheme 4724 January 2007

4724	Mark Scheme	January 2007	
1	Factorise numerator and denominator	M1	or Attempt long division
	Num = $(x+6)(x-4)$ or denom = $x(x-4)$	A1	$\text{Result} = 1 + \frac{6x - 24}{x^2 - 4x}$
	Final answer = $\frac{x+6}{x}$ or $1 + \frac{6}{x}$	A1 3	$=1+\frac{6}{x}$
2	Use parts with $u = \ln x$, $dv = x$	M1	& give 1 st stage in form $f(x) + /-\int g(x)(dx)$
	Obtain $\frac{1}{2}x^2 \ln x - \int \frac{1}{x} \cdot \frac{1}{2}x^2 (dx)$	A1	or $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x(dx)$
	$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 (+c)$	A1	
	Use limits correctly	M1	
	Exact answer $2 \ln 2 - \frac{3}{4}$	A1 5	AEF ISW
3	(i) Find $\boldsymbol{a} - \boldsymbol{b}$ or $\boldsymbol{b} - \boldsymbol{a}$ irrespective of label	M1	(expect $11i - 2j - 6k$ or $-11i + 2j + 6k$)
	Method for magnitude of any vector	M1	
	$\sqrt{161} \text{ or } 12.7(12.688578)$	A1 3	
	(ii) Using $(\overline{AO} \text{ or } \overline{OA})$ and $(\overline{AB} \text{ or } \overline{BA})$	B1	Do not class angle <i>AOB</i> as MR
	$\cos \theta = \frac{\text{scalar product of any two vectors}}{\text{product of their moduli}}$	M1	
	43 or better (42.967), 0.75 or better (0.7499218	A1 3	If 137 obtained, followed by 43, award A0 Common answer 114 probably \rightarrow B0 M1 A0
4	Attempt to connect dx and du	M1	but not just $dx = du$
	For $du = 2 dx$ AEF correctly used	A1	sight of $\frac{1}{2}$ (du) necessary
	$\int u^8 + u^7 (\mathrm{d}u)$	A1	or $\int u^7(u+1)(\mathrm{d}u)$
	Attempt new limits for u at any stage (expect 0,1)	M1	or re-substitute & use $(\frac{5}{2},3)$
	$\frac{17}{72}$	A1 5	AG WWW
	S.R. If M1 A0 A0 M1 A0, award S.R. B1 for answe	$\frac{68}{72}, \frac{34}{36} \text{ or } \frac{17}{18}$	ISW
5	(i) Show clear knowledge of binomial expansion	M1	-3x should appear but brackets can be
	1	D1	missing; $-\frac{1}{3}$. $-\frac{4}{3}$ should appear, not $-\frac{1}{3}$. $\frac{2}{3}$
	$= 1 + x$ $+ 2x^{2}$	B1 A1	Correct first 2 terms; not dep on M1
	+2x + $\frac{14}{3}x^{3}$	A1 4	
	(ii) Attempt to substitute $x + x^3$ for x in (i)	M1	Not just in the $\frac{14}{3}x^3$ term
	Clear indication that $(x + x^3)^2$ has no term in x^3	A1	
	$\frac{17}{3}$	$\sqrt{A1}$ 3	f.t. $\operatorname{cf}(x) + \operatorname{cf}(x^3)$ in part (i)
6	(i) $2x + 1 = / = A(x - 3) + B$	M1	
	$\begin{array}{l} A=2\\ B=7 \end{array}$	A1 A/B1 3	Cover up rule accenteble for D1
	(ii) $\int \frac{1}{x-3} (dx) = \ln(x-3) \text{ or } \ln x-3 $	A/B 1 3 B1	Cover-up rule acceptable for B1 Accept A or $\frac{1}{A}$ as a multiplier
	$\int \frac{1}{(x-3)^2} (dx) = -\frac{1}{x-3}$	B1	Accept <i>B</i> or $\frac{1}{B}$ as a multiplier
	6 + 2 ln 7 Follow-through $\frac{6}{7}B + A \ln 7$	√B2 4	

				January 2007
7	$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x \frac{\mathrm{d}y}{\mathrm{d}x} + y$	B1		
	$\frac{d}{dx}\left(y^{2}\right) = 2y\frac{dy}{dx}$	B1		
	$4x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$	B1		
	Put $\frac{dy}{dx} = 0$	*M1		
	Obtain $4x + y = 0$ AEF	A1		and no other (different) result
	Attempt to solve simultaneously with eqn of curve	dep*M1		
	Obtain $x^2 = 1$ or $y^2 = 16$ from $4x + y = 0$	A1		
	(1,-4) and $(-1,4)$ and no other solutions	A1	8	Accept $(\pm 1, \mp 4)$ but not $(\pm 1, \pm 4)$
8	(i) Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and $-\frac{1}{m}$ for grad of normal	M1		or change to cartesian.,diff & use $-\frac{1}{m}$
	= -p AG WWW	A1	2	Not $-t$.
	(ii) Use correct formula to find gradient of line	M1		
	Obtain $\frac{2}{p+q}$ AG WWW	A1	2	Minimum of denom = $2(p-q)(p+q)$
	(iii) State $-p = \frac{2}{p+q}$	M1		Or find eqn normal at P & subst $(2q^2, 4q)$
	Simplify to $p^2 + pq + 2 = 0$ AG WWW	A1	2	With sufficient evidence
	(iv) $(8,8) \rightarrow t$ or p or $q = 2$ only	B1		No possibility of -2
	Subst $p = 2$ in eqn (iii) to find q_1	M1		Or eqn normal, solve simult with cartes/param
	Subst $p = q_1$ in eqn (iii) to find q_2	M1		Ditto
	$q_2 = \frac{11}{3} \rightarrow \left(\frac{242}{9}, \frac{44}{3}\right)$	A1	4	No follow-through; accept (26.9, 14.7)
0		M1		seen or implied
9	(i) Separate variables as $\int \sec^2 y dy = 2 \int \cos^2 2x dx$	M1		
9	LHS = tan y	A1		
y	LHS = $\tan y$ RHS; attempt to change to double angle	A1 M1		
y	LHS = $\tan y$ RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$	A1 M1 A1		
9	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$	A1 M1 A1 A1		
9	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c)	A1 M1 A1 A1 A1	7	$\tan y = x + \frac{1}{4}\sin 4x$
9	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side	A1 M1 A1 A1	7	$\tan y = x + \frac{1}{4}\sin 4x$ <u>not</u> on both sides unless c_1 and c_2
9	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c)	A1 M1 A1 A1 A1 A1	7	$\tan y = x + \frac{1}{4}\sin 4x$
9	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition	A1 M1 A1 A1 A1 A1 A1 M1	7	tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue
9 <u>10</u>	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors)	A1 M1 A1 A1 A1 A1 A1 A1 A1 A1 M1		tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark
	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors) r = (either point) + t(i -2 j - 3 k or - i + 2 j + 3 k)	A1 M1 A1 A1 A1 A1 A1 A1 A1 M1 A1		tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark but it is essential for the A mark
	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors) $\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \text{ or } -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ (ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$	A1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 B1	3	tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark
	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors) $\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \text{ or } -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ (ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ Eval scalar product of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ their dir vect in (i) Show as $(1x1 \text{ or } 1) + (2x-2 \text{ or } -4) + (-1x-3 \text{ or } 3)$	A1 M1 A1 A1 A1 A1 A1 A1 A1 A1 B1 M1 A1	3	tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark but it is essential for the A mark
	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors) $\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \text{ or } -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ (ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ Eval scalar product of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ & their dir vect in (i) Show as $(1x1 \text{ or } 1) + (2x-2 \text{ or } -4) + (-1x-3 \text{ or } 3)$ = 0 and state perpendicular AG	A1 M1 A1 A1 A1 A1 A1 A1 A1 A1 B1 M1 A1 A1 A1	3	tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark but it is essential for the A mark Accept any parameter, including <i>t</i> This is just one example of numbers involved
	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors) r = (either point) + t(i - 2j - 3k or -i + 2j + 3k) (ii) r = s(i + 2j - k) or (i + 2j - k) + s(i + 2j - k) Eval scalar product of $i+2j-k$ & their dir vect in (i) Show as $(1x1 \text{ or } 1)+(2x-2 \text{ or } -4)+(-1x-3 \text{ or } 3)$ = 0 and state perpendicular AG (iii) For at least two equations with diff parameters	A1 M1 A1 A1 A1 A1 A1 A1 A1 B1 M1 A1 A1 A1 M1	3	tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark but it is essential for the A mark Accept any parameter, including <i>t</i> This is just one example of numbers involved e.g. $5 + t = s$, $2 - 2t = 2s$, $-9 - 3t = -s$
	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors) $\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \text{ or } -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ (ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ Eval scalar product of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ & their dir vect in (i) Show as $(1x1 \text{ or } 1) + (2x-2 \text{ or } -4) + (-1x-3 \text{ or } 3)$ = 0 and state perpendicular AG	A1 M1 A1 A1 A1 A1 A1 A1 A1 A1 B1 M1 A1 A1 A1	3	tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark but it is essential for the A mark Accept any parameter, including <i>t</i> This is just one example of numbers involved
	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors) $\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \text{ or } -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ (ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ Eval scalar product of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ their dir vect in (i) Show as $(1x1 \text{ or } 1) + (2x-2 \text{ or } -4) + (-1x-3 \text{ or } 3)$ = 0 and state perpendicular AG (iii) For at least two equations with diff parameters Obtain $t = -2$ or $s = 3$ (possibly -3 or 2 or -2)	A1 M1 A1 A1 A1 A1 A1 A1 A1 B1 M1 A1 A1 A1 M1 A1 A1	3 2 4	tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark but it is essential for the A mark Accept any parameter, including <i>t</i> This is just one example of numbers involved e.g. $5 + t = s$, $2 - 2t = 2s$, $-9 - 3t = -s$
	LHS = tan y RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$ $\int \cos 4x dx = \frac{1}{4} \sin 4x$ Completely correct equation (other than +c) +c on either side (ii) Use boundary condition c (on RHS) = 1 Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$ (i) For (either point) + t(diff between posn vectors) $\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \text{ or } -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ (ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ Eval scalar product of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$) $+ s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ Eval scalar product of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$) $+ s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ Eval scalar product of $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$) $+ s(\mathbf{i} - 3\mathbf{or } 3)$ = 0 and state perpendicular AG (iii) For at least two equations with diff parameters Obtain $t = -2$ or $s = 3$ (possibly -3 or 2 or -2) Subst. into eqn <i>AB</i> or <i>OT</i> and produce $3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$	A1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	3 2 4	tan $y = x + \frac{1}{4} \sin 4x$ <u>not</u> on both sides unless c_1 and c_2 provided a sensible outcome would ensue or $c_2 - c_1 = 1$; not fortuitously obtained or 4.19 or 7.33 etc. Radians only " r =" not necessary for the M mark but it is essential for the A mark Accept any parameter, including <i>t</i> This is just one example of numbers involved e.g. $5 + t = s$, $2 - 2t = 2s$, $-9 - 3t = -s$ Check if $t = 2,1$ or -1

January 2007

In the above question, accept any vectorial notation

4724

t and s may be interchanged, and values stated above need to be treated with caution.

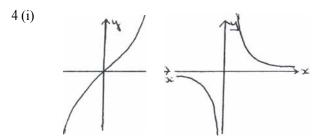
In (iii), if the point of intersection is correct, it is more than likely that the whole part is correct – but check.

Mark Scheme 4725 January 2007

1.	(i) <i>a</i> = -3	B1	1	State correct value
	(ii) $2a - 3 = 7$ or $3a - 6 = 9$	M1		Sensible attempt at multiplication
	<i>a</i> = 5	Al	2	Obtain correct answer
			3	
2.		M1		Attempt to equate real and
				imaginary parts of $(x + iy)^2$ and 15
	$x^2 - y^2 = 15$ and $xy = 4$	A1 A1		+8i
		M1		Obtain each result
		DM1		Eliminate to obtain a quadratic in x^2
	$\pm (4 + i)$	A1	6	or y^2
			6	Solve to obtain $x = (\pm)4$, or $y =$
				(±)1
				Obtain only correct two answers as complex numbers
3.		M1		Expand to obtain $r^3 - r$
		M1		Consider difference of two standard results
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{2}n(n+1)$	Al		Obtain correct unfactorised answer
		M1		Attempt to factorise
		A1		Obtain factor of $\frac{1}{4}n(n+1)$
	$\frac{1}{4}n(n-1)(n+1)(n+2)$	A1	6	Obtain correct answer
			6	
4.	(i)	B1		Circle
		B1		Centre (1, -1)
		B1	3	Passing through (0, 0)
	(ii)	B1		Sketch a concentric circle
		B1		Inside (i) and touching axes
		B1	3	Shade between the circles
5.	(i)	B1	1	Show given answer correctly

	(ii)	M1		Attempt to solve quadratic equation or substitute $x + iy$ and equate real and imaginary parts
	$-1\pm i\sqrt{3}$ (iii)	A1 A1 B1 B1	3	Obtain answers as complex numbers Obtain correct answers, simplified Correct root on x axis, co-ords. shown
		B1	3	Other roots in 2 nd and 3 rd quadrants Correct lengths and angles or co- ordinates or complex numbers
			7	shown
6.	(i)	B1		Correct expression for u_{n+1}
		M1		Attempt to expand and simplify
	$u_{n+1} - u_n = 2n + 4$	A1	3	Obtain given answer correctly
	(ii)	B1		State $u_1 = 4$ (or $u_2 = 10$) and is divisible by 2
		M1		State induction hypothesis true for
		M1		u_n
		A1		Attempt to use result in (ii)
		A1	5	Correct conclusion reached for u_{n+1}
			8	Clear, explicit statement of induction conclusion
7.	(i) $\alpha + \beta = -5$ $\alpha\beta = 10$	B1 B1	2	State correct values
	(ii) $\alpha^2 + \beta^2 = 5$	M1		Use $(\alpha + \beta)^2 - 2\alpha\beta$
		A1	2	Obtain given answer correctly, using value of -5
	(iii)	B1		Product of roots = 1
		M1		Attempt to find sum of roots
		A1		Obtain $\frac{5}{10}$ or equivalent
	$x^2 - \frac{1}{2}x + 1 = 0$	B1ft	4	Write down required quadratic
			8	equation, or any multiple.

8.	(i)	M1		Factor of $r!$ or $(r + 1)!$ seen
		A1		Factor of $(r+1)$ found
	$(r+1)^2 r!$	A1	3	Obtain given answer correctly
	(ii)	M1		Express terms as differences using
		A1		(i)
		M1		At least 1 st two and last term correct
	(n+2)! - 2!	A1	4	Show that pairs of terms cancel
	(iii)	B1ft	1	Obtain correct answer in any form
			8	Convincing statement for non- converging, ft their (ii)
9.		M1		For at least two correct images
	$(i) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	A1	2	For correct diagram, co-ords.clearly written down
	(ii) 90° clockwise, centre origin	B1 B1		Or equivalent correct description
	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	B1	3	Correct matrix, not in trig form
	(iii) Stretch parallel to <i>x</i> -axis, s.f. 3	B1 B1		Or equivalent correct description, but must be a stretch for 2 nd B1
	$\left(\begin{array}{c} 3 \ 0\\ 0 \ 1 \end{array}\right)$	B1 B1	4 9	Each correct column


10.	(i)	M1		Show correct expansion process for
		M1		3 x 3
	$\Delta = \det \mathbf{D} = 3a - 6$	A1		Correct evaluation of any 2 x 2 det
		M1		Obtain correct answer
		A1		Show correct process for adjoint
		B1		entries
	$\mathbf{D}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3 & -2 & 4 \\ -3 & a & -2a \\ -3 & a & a & -6 \end{pmatrix}$	A1	7	Obtain at least 4 correct entries in
	(ii) $\frac{1}{\Delta} \begin{pmatrix} 5\\ 2a-9\\ 5a-15 \end{pmatrix}$			adjoint
		M1		Divide by their determinant
		A1A1A1 ft all 3	4	Obtain completely correct answer
			11	
				Attempt product of form D ⁻¹ C , or eliminate to get 2 equations and solve Obtain correct answers, ft their inverse

Mark Scheme 4726 January 2007

- 1 (i) f(O) = In 3 f $f'(O) = \frac{1}{3}$ $f'(O) = -\frac{1}{3} A.G.$
 - (ii) Reasonable attempt at Maclaurin

$$f(x) = \ln 3 + \frac{1}{3}x - \frac{1}{18}x^2$$

- 2 (i) f(0.8) = 0.03, f(0.9) = +0.077 (accurately e.g. accept -0.02 t0 -0.04) Explain (change of sign, graph etc.)
- (ii) Differentiate two terms Use correct form of Newton-Ra ph son with 0.8, using their f '(x) Use their N-R to give one more approximation to 3 d.p. minimum Get x = 0.835
- 3 (i) Show area of rect. = ${}^{1}/_{4} (e^{l/16} + e^{1/4} + e^{9/16} + e^{l})$ Show area = 1.7054 Explain the < 1.71 in terms of areas
- (ii) Identify areas for > sign Show area of rect. = $\frac{1}{4} (e^{\circ} + e^{11/6} + e^{1/4} + e^{9/16})$ Get A > 1.27

(ii) Correct definition of sinh *x* Invert and mult. by eX to AG.

Sub.
$$u = e^{x}$$
 and $du = e^{x} dx$

Replace to $2/(u^2 - 1) du$ Integrate to aln((u - l)/(u + 1))Replace u Bl Bl B1 Clearly derived

MI Form In3 + $ax + bx^2$, with a, brelated to f "f" A/\sqrt{J} On their values off and f" SR Use ln(3+x) = In3 + In(1 + 1/3)x) MI Use Formulae Book to get In3 + Y3X - Y2(VJX)2 =In3 + Y3X - 1/1gX2 Al

B1 D1

DI	
SR Use $x = \sqrt{J(tan^{-1}x)}$ and compare x to	,
$\sqrt{J(\tan^{-1} x)}$ for $x=0.8, 0.9$	B 1
Explain "change in sign"	B 1

B1 Get $2x - I l(1 + x^2)$

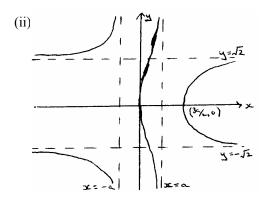
Ml 0.8 - f(0.8)/f '(0.8)

Ml√

Al 3d.p. - accept answer which rounds Ml Or numeric equivalent Al At least 3 d.p. correct Bl AG. Inequality required

B1 Inequality or diagram required MI Or numeric evidence Al cao; or answer which rounds down

- BI Correct shape for $\sinh x$
- B1 Correct shape for cosech x
- B1 Obvious point $(dy/dx \neq O)/asymptotes$ clear
- B1 May be implied
- B1 Must be clear; allow 2/(eX-e -X) as mimimum simplification
- M1 Or equivalent, all x eliminated and not dx = du
- Al
- A1 $\sqrt{}$ Use formulae book, PT, or atanh⁻¹u
- Al No need for *c*


4726

Mark Scheme

Jan 2007

- 5 (i) Reasonable attempt at parts Get xnsin x - $\int \sin x. nx^{n-1} dx$ Attempt parts again Accurately Clearly derive AG.
 - (ii) Get $I_4 = (1/2\pi)^4 12I_2$ or $I_2 = (1/2\pi)^2 2I_0$ Show clearly $I_0 = 1$ Replace their values in relation Get $I_4 = 1/16\pi^4 - 3\pi^2 + 24$

6 (i)
$$x = \pm a$$
, $y = 2$

7 (i) Write as
$$A/t + B/t^2 + (Ct + D)/(t^2 + 1)$$

Equate $At(t^2+1) + B(t^2+1) + (Ct+D)t^2$ to 1 - t^2 Insert t values I equate coeff. Get A = C = 0, B = L D = -2

(ii) Derive or quote $\cos x$ in terms of tDerive or quote $dx = 2 dt/(1 + t^2)$ Sub. in to correct P.F. Integrate to $-1/t - 2 tan^{-1}t$ Use limits to clearly get AG.

8 (i) Get
$$(e^{y} - e^{-y})/(e^{y} + e^{-y})$$

- (ii) Attempt quad. in e^γ
 Solve for e^γ
 Clearly get AG.
- (iii) Rewrite as $\tanh x = k$ Use (ii) for $x = \sqrt{2} \ln 7$ or equivalent
- (iv) Use of log laws Correctly equate $\ln A = \ln B$ to A = BGet $x = \pm \frac{3}{5}$

M1 Involving second integral Al M1 Al A1 Indicate $(1/2\pi)^n$ and 0 from limits

B1, B1, B1 Must be =; no working needed

- B1 Two correct labelled asymptotes ||Ox| and approaches
- B1 Two correct labelled asymptotes || *Oy* and approaches
- B1 Crosses at (³/₂*a*,0) (and (0,0) may be implied
- B1 90° where it crosses Ox; smoothly
- B1 Symmetry in Ox

M1 Allow $(At+B)/t^2$; justify $B/t^2 + D/(l + t^2)$ if only used

M1√

M1 Lead to at least two constant values

Al

SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong

Bl B1

M1 Allow $k (l-t^2)/((t^2(l+t^2)))$ or equivalent Al $\sqrt{1}$ From their k Al

B1 Allow $(e^{2Y}-1)/(e^{2y}+1)$ or if x used

M1 Multiply by e^{γ} and tidy M1

Al

M1 SR Use hyp defⁿ to get quad. in e^{X} M I Al Solve $e^{2x} = 7$ for x to $\frac{1}{2} \ln 7$ Al Bl One used correctly M1 Or $1n(^{A}I_{B}) = 0$ Al

0:57

- (ii) U se correct formula with correct r $f \sec^2 x \, dx = \tan x \text{ used}$ Quote f2 secx tanx $dx = 2\sec x$ Replace $\tan^2 x$ by $\sec^2 x - 1$ to integrate Reasonable attempt to integrate 3 terms And to use limits correctly Get $\sqrt{3} + 1 - \frac{1}{6\pi}$
- (iii) Use $x = r \cos\theta$, $y = r \sin\theta$, $r = (x^2 + y^2)^{1/2}$ Reasonable attempt to eliminate r, θ Get $y = (x-1)\sqrt{(x^2+y^2)}$

B1 Shape for correct θ ; ignore other θ Used; start at (*r*,0)

B1 θ =0, *r*=1 and increasing *r*

B1 B1 B1 Or sub. correctly M1

M1 Al Exact only

```
M1
M1
A1 Or equivalent
```

Mark Scheme 4727 January 2007

1 (i) Attempt to show no closure	M1		For showing operation table or otherwise
$3 \times 3 = 1, 5 \times 5 = 1 OR 7 \times 7 = 1$	A1		For a convincing reason
OR Attempt to show no identity	M1		For attempt to find identity <i>OR</i> for showing operation table
Show $a \times e = a$ has no solution	A1	2	For showing identity is not 3, not 5, and not 7 by reference to operation table or otherwise
(ii) $(a =) 1$	B1	1	For value of <i>a</i> stated
(ii) (iii) EITHER:		1	
$\{e, r, r^2, r^3\}$ is cyclic, (ii) group is not cyclic	B1*		For a pair of correct statements
 OR: {e, r, r², r³} has 2 self-inverse elements, (ii) group has 4 self-inverse elements 	B1*		For a pair of correct statements
<i>OR</i> : $\{e, r, r^2, r^3\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*		For a pair of correct statements
<i>OR</i> : $\{e, r, r^2, r^3\}$ has element(s) of order 4 (ii) group has no element of order 4	B1*		For a pair of correct statements
Not isomorphic	B1 (dep ³	*) 2	For correct conclusion
2 <i>EITHER</i> : [3, 1, -2] × [1, 5, 4]	M1		For attempt to find vector product of both normals
\Rightarrow b = $k[1, -1, 1]$	A1		For correct vector identified with b
e.g. put x OR y OR $z = 0$	M1		For giving a value to one variable
and solve 2 equations in 2 unknowns	M1		For solving the equations in the other variables
Obtain [0, 2, -1] OR [2, 0, 1] OR [1, 1, 0]	A1		For a correct vector identified with a
<i>OR</i> : Solve $3x + y - 2z = 4$, $x + 5y + 4z = 6$			
e.g. $y + z = 1$ OR $x - z = 1$ OR $x + y = 2$	M1		For eliminating one variable between 2 equations
Put $x OR y OR z = t$	M1		For solving in terms of a parameter
[x, y, z] = [t, 2-t, -1+t] OR [2-t, t, 1-t] OR [1+t, 1-t, t]	M1		For obtaining a parametric solution for x, y, z
Obtain [0, 2, -1] OR [2, 0, 1] OR [1, 1, 0]	A1		For a correct vector identified with a
Obtain $k[1, -1, 1]$	A1	5	For correct vector identified with b
	5		
3 (i) $z = \frac{6 \pm \sqrt{36 - 144}}{2}$	M1		For using quadratic equation formula or completing the square
$z = 3 \pm 3\sqrt{3}i$	A1		For obtaining cartesian values AEF
Obtain $(r =) 6$	Al		For correct modulus
Obtain $(\theta =) \frac{1}{3}\pi$	A1	4	For correct argument
(ii) EITHER: $6^{-3} OR \frac{1}{216}$ seen	B 1√		f.t. from their r^{-3}
$Z^{-3} = 6^{-3} (\cos(-\pi) \pm i \sin(-\pi))$	M1		For using de Moivre with $n = \pm 3$
Obtain $-\frac{1}{216}$	A1		For correct value
$OR: \ z^3 = 6z^2 - 36z = 6(6z - 36) - 36z$	M1		For using equation to find z^3
216 seen	B1		Ignore any remaining z terms
Obtain $-\frac{1}{216}$	A1	3	For correct value
	7		

4 (i) $(y = xz \Rightarrow) \frac{dy}{dx} = x \frac{dz}{dx} + z$	B1	For a correct statement
$x\frac{dz}{dx} + z = \frac{x^2(1-z^2)}{x^2z} = \frac{1}{z} - z$	M1	For substituting into differential equation and attempting to simplify to a variables separable form
$x\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{z} - 2z = \frac{1 - 2z^2}{z}$	A1 3	For correct equation AG
(ii) $\int \frac{z}{1-2z^2} dz = \int \frac{1}{x} dx \implies -\frac{1}{4} \ln(1-2z^2) = \ln cx$	M1 M1* A1	For separating variables and writing integrals For integrating both sides to ln forms For correct result (<i>c</i> not required here)
$1 - 2z^2 = (cx)^{-4}$	A1√	For exponentiating their ln equation including a constant (this may follow the next M1)
$\frac{x^2 - 2y^2}{x^2} = \frac{c^{-4}}{x^4}$	M1 (dep*)	For substituting $z = \frac{y}{x}$
$x^2(x^2-2y^2) = k$	A1 6	For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
5 (i) (a) e, p, p^2	B1	For correct elements
(b) e, q, q^2	B1 2	For correct elements
(~) ~, 4, 4		SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
(ii) $p^3 = q^3 = e \Rightarrow (pq)^3 = p^3 q^3 = e$	M1	For finding $(pq)^3$ or $(pq^2)^3$
\Rightarrow order 3	A1	For correct order
$(pq^2)^3 = p^3q^6 = p^3(q^3)^2 = e \Rightarrow \text{order } 3$	A1 3	For correct order
		SR For answer(s) only allow B1 for either or both
(iii) 3	B1 1	For correct order and no others
(iv)	B1	For stating <i>e</i> and either pq or p^2q^2
$e, pq, p^2q^2 OR e, pq, (pq)^2$	B1	For all 3 elements and no more
	B1	For stating <i>e</i> and either pq^2 or p^2q
$e, pq^2, p^2q \ OR \ e, pq^2, (pq^2)^2$	B1 4	For all 3 elements and no more
$OR \ e, p^2 q, (p^2 q)^2$		
	10	
$OR \ e, p^2 q, (p^2 q)^2$	10	

6 (i) (CF $m = -3 \Rightarrow$) Ae^{-3x}	B1 1	For correct CF
(ii) $(y =) px + q$	B1	For stating linear form for PI (may be implied)
$\Rightarrow p+3(px+q)=2x+1$	M1	For substituting PI into DE (needs y and $\frac{dy}{dx}$)
$\Rightarrow p = \frac{2}{3}, q = \frac{1}{9}$	A1 A1	For correct values
$\Rightarrow GS y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√	For correct GS. f.t. from their CF + PI
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $e^{3x} \implies \frac{d}{dx}(ye^{3x}) = (2x+1)e^{3x}$	B1	For stating integrating factor
$\Rightarrow y e^{3x} = \frac{1}{3}e^{3x}(2x+1) - \int \frac{2}{3}e^{3x} dx$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y e^{3x} = \frac{2}{3}x e^{3x} + \frac{1}{3}e^{3x} - \frac{2}{9}e^{3x} + A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
$\Rightarrow GS y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√ 5	For correct GS. f.t. from their * with constant
(iii) EITHER $\frac{dy}{dx} = -3Ae^{-3x} + \frac{2}{3}$	M1	For differentiating their GS
$\Rightarrow -3A + \frac{2}{3} = 0$	M1	For putting $\frac{dy}{dx} = 0$ when $x = 0$
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1	For correct solution
$OR \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ x = 0 \implies 3y = 1$	M1	For using original DE with $\frac{dy}{dx} = 0$ and $x = 0$ to find y
$\Longrightarrow \frac{1}{3} = A + \frac{1}{9}$	M1	For using their GS with y and $x = 0$ to find A
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1 3	For correct solution
(iv) $y = \frac{2}{3}x + \frac{1}{9}$	B1√ 1	For correct function. f.t. from linear part of (iii)
	10	

4727

7 (i) <i>EITHER</i> : (AG is $\mathbf{r} = $)[6, 4, 8]+ tk [1, 0, 1] or [3, 4, 5]+ tk [1, 0, 1]	B1	For a correct equation					
Normal to <i>BCD</i> is	M1	For finding vector product of any two of $\pm [1, -4, -1], \pm [2, 1, 1], \pm [1, 5, 2]$					
$\mathbf{n} = k[1, 1, -3]$	A1	For correct n					
Equation of <i>BCD</i> is $\mathbf{r} \cdot [1, 1, -3] = -6$	A1	For correct equation (or in cartesian form)					
Intersect at $(6+t) + 4 + (-3)(8+t) = -6$	M1	For substituting point on AG into plane					
$t = -4 \ (t = -1 \text{ using } [3, 4, 5]) \Rightarrow \mathbf{OM} = [2, 4, 4]$	A1	For correct position vector of M AG					
<i>OR</i> : (AG is $\mathbf{r} =$)[6, 4, 8]+ tk [1, 0, 1] <i>or</i> [3, 4, 5]+ tk [1, 0, 1]	B1	For a correct equation					
$\mathbf{r} = \mathbf{u} + \lambda \mathbf{v} + \mu \mathbf{w}, \text{ where}$ $\mathbf{u} = [2, 1, 3] \text{ or } [1, 5, 4] \text{ or } [3, 6, 5]$ $\mathbf{v}, \mathbf{w} = \text{ two of } [1, -4, -1], [1, 5, 2], [2, 1, 1]$	M1 A1	For a correct parametric equation of <i>BCD</i>					
$(x =) 6+t = 2 + \lambda + \mu$ e.g. $(y =) 4 = 1 - 4\lambda + 5\mu$ $(z =) 8+t = 3 - \lambda + 2\mu$	M1	For forming 3 equations in <i>t</i> , λ , μ from line and plane, and attempting to solve them					
$t = -4 \text{ or } \lambda = -\frac{1}{3}, \mu = \frac{1}{3}$	A1	For correct value of t or λ , μ					
\Rightarrow OM = [2, 4, 4]	A1 6	For correct position vector of <i>M</i> AG					
(ii)		F					
A, G, M have t = 0, -3, -4 OR $AG = 3\sqrt{2}, AM = 4\sqrt{2} OR$ AG = [-3, 0, -3], AM = [-4, 0, -4] $\Rightarrow AG : AM = 3:4$	B1 1	For correct ratio AEF					
(iii) $OP = OC + \frac{4}{3}CG$	M1	For using given ratio to find position vector of P					
$= \left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]$	A1 2	For correct vector					
(iv) <i>EITHER</i> : Normal to <i>ABD</i> is	M1	For finding vector product of any two of $\pm[4, 3, 5], \pm[1, 5, 2], \pm[3, -2, 3]$					
$\mathbf{n} = k[19, 3, -17]$	A1	For correct n					
Equation of <i>ABD</i> is $r.[19, 3, -17] = -10$	M1	For finding equation (or in cartesian form)					
$19.\frac{11}{3} + 3.\frac{11}{3} - 17.\frac{16}{3} = -10$	A1	For verifying that <i>P</i> satisfies equation					
<i>OR</i> : Equation of <i>ABD</i> is $\mathbf{r} = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$ (etc.)	M1	For finding equation in parametric form					
$\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$	M1	For substituting <i>P</i> and solving 2 equations for λ , μ					
$\lambda = -\frac{2}{3}, \mu = \frac{1}{3}$	A1	For correct λ , μ					
	A1	For verifying 3rd equation is satisfied					
<i>OR</i> : AP = $\left[-\frac{7}{3}, -\frac{1}{3}, -\frac{8}{3}\right]$	M1	For finding 3 relevant vectors in plane ABDP					
	A1	For correct AP or BP or DP					
AB = [-4, -3, -5], AD = [-3, 2, -3] ⇒ AB + AD = [-7, -1, -8]	M1	For finding AB, AD or BA, BD or DB, DA					
$\Rightarrow \mathbf{AP} = \frac{1}{3} (\mathbf{AB} + \mathbf{AD})$	A1 4	For verifying linear relationship					
3	13	rot tetrying mear relationship					
	15						

8 (i) $\cos 4\theta + i \sin 4\theta =$ $c^4 + 4ic^3s - 6c^2s^2 - 4ics^3 + s^4$ $\Rightarrow \sin 4\theta = 4c^3s - 4cs^3$	M1	For using de Moivre with $n = 4$
and $\cos 4\theta = c^4 - 6c^2s^2 + s^4$	A1	For both expressions
$\Rightarrow \tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}$	M1	For expressing $\frac{\sin 4\theta}{\cos 4\theta}$ in terms of <i>c</i> and <i>s</i>
	A1 4	For simplifying to correct expression For inverting (i)
(ii) $\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta}$	B1 1	and using $\cot \theta = \frac{1}{\tan \theta}$ or $\tan \theta = \frac{1}{\cot \theta}$. AG
(iii) $\cot 4\theta = 0$	B1	For putting $\cot 4\theta = 0$
Put $x = \cot^2 \theta$ $\theta = \frac{1}{8}\pi \Rightarrow x^2 - 6x + 1 = 0$ $OR x^2 - 6x + 1 = 0 \Rightarrow \theta = \frac{1}{8}\pi$	B1 B1 3	(can be awarded in (iv) if not earned here) For putting $x = \cot^2 \theta$ in the numerator of (ii) For deducing quadratic from (ii) and $\theta = \frac{1}{8}\pi$ <i>OR</i> For deducing $\theta = \frac{1}{8}\pi$ from (ii) and quadratic
(iv) $4\theta = \frac{3}{2}\pi OR \frac{1}{2}(2n+1)\pi$	M1	For attempting to find another value of θ
2nd root is $x = \cot^2\left(\frac{3}{8}\pi\right)$	A1	For the other root of the quadratic
$\Rightarrow \cot^2\left(\frac{1}{8}\pi\right) + \cot^2\left(\frac{3}{8}\pi\right) = 6$	M1	For using sum of roots of quadratic
$\Rightarrow \csc^2\left(\frac{1}{8}\pi\right) + \csc^2\left(\frac{3}{8}\pi\right) = 8$	M1 A1 5 13	For using $\cot^2 \theta + 1 = \csc^2 \theta$ For correct value

Mark Scheme 4728 January 2007

4728

1	(i)	Net force on trailer is $+/-(700 - R_T)$	B1		
			M1		For applying Newton's second law to the trailer with 2 terms on LHS (no vertical forces)
		$700 - R_T = 600 \ge 0.8$	A1ft	4	ft cv (+/-(700 - R_T))
	(ii)	Resistance is 220N	A1 M1	4	For applying Newton's second law to the car or to the whole, with a =+/- 0.8 (no vertical forces)
		$2100 - 700 - R_{\rm C} =$ 1100 x 0.8	Alft		whole, with a = 1/2 0.8 (no vertical forces)
		or $2100 - (R_{\rm C} + 220) =$			ft cv(220)
		(1100 + 600)x 0.8			
		Resistance is 520N	A1	3	
2	(i)		M1		For resolving forces vertically
		15 x 0.28 and 11x 0.8	A1		Allow use of $= 16.3$ and $= 53.1$
		Y = 15x0.28 + 11x0.8 - 13	A1ft		Ft cv(15 x 0.28 and 11x 0.8)
		Component is zero AG	A1	4	SR 15sin + 11sin $-13 = 0$ gets M1A0A1ftA0
	(ii)	V 15 0.06 11	M1		For resolving forces horizontally
		$X = 15 \ge 0.96 - 11 \ge 0.6$	A1		Allow use of $= 16.3$ and $= 53.1$
	/**	Magnitude is 7.8N	A1	3	Accept 7.79, -7.8
	(iii)	Direction is that of the (+ve) x -axis	B1	1	Do not allow horizontal, 90° from vertical. Do not award if = 16.3 and =53.1
					have been used.
3	(i)	T = 0.3g	B1		At particle (or $0.3g - T = 0.3a$)
		$\mathbf{F} = \mathbf{T}$	B1		Or $F = cv(T \text{ at particle})$ (or $T - F = 0.4a$)
		R = 0.4g	B1 M1		For using $F = \mu R$
		Coefficient is 0.75	A1	5	
	(ii)	X = 0.3g + 0.3g	M1 A1ft		For resolving 3 relevant forces on B horizontally, a=0 Ft X = $0.3g + cv(\mu)$
		X = 5.88N	A1	3	cv(R)

4	(i)	Momentum before	B1		Or momentum change L
		collision			$0.8x4 + - 0.8v_L$
		= +/-(0.8 x 4 - 0.6 x 2)			Accept inclusion of g in both terms
		Momentum after	B1		Momentum change N
		collision			0.6x2 + 0.6x2
		$= +/-0.8v_{\rm L} + 0.6 \ge 2$			Accept inclusion of g in both terms
			M1		For using the principle of conservation of momentum
					even if g is included throughout
		Speed is 1 ms ⁻¹	A1	4	Accept -1 from correct work (g not used).
	(11)		2.64		
	(ii)(a)	0.6x2 - 0.7x0.5	M1		Must be a difference. SR $0.6x1 - 0.7x0.5$ M1
		Total is 0.85kgms ⁻¹	A1		Must be positive
		<u>Total</u> momentum +ve	DM		Or $0.6v + 0.7w$ is positive, confirming that the
		after the collision.	1		momentum is shared between two particles.
		If N continues in its			No reference need be made to the physically
		original direction, both			impossible scenario where M and N both might
		particles have a			continue in their original directions.
		negative momentum.			
		N must reverse its	A1	4	
		direction.			
	(ii)(b)	0.6x2 - 0.7x0.5 (=	A1ft		ft cv (0.85). Award M1 if not given in ii(a).
		0.85) = 0.7v			
		Speed is 1.21ms ⁻¹	A1	2	Positive. Accept (a.r.t) 1.2 from correct work
_	(1)	1.0.2/0 (+ C)	3 64 1		•
5	(i)	$1.8t^2/2$ (+C)	M*1		For using $v = \int a dt$
		(t = 0, v = 0) C = 0	B1		May be awarded in (ii). Accept c written and deleted.
		Expression is $1.8t^2/2$	A1	3	also for $1.8t^2 + c$
	(ii)	1	M1		For using $s = \int v dt$
					5
		$0.9t^{3}/3$ (+K)	A1		SR Award B1 for $(s = 0, t = 0)$ K = 0 if not already
					given in (i), or +K included and limits used.
		0.3 x 64	M1		For using limits 0 to 4 (or equivalent)
		19.2m AG	A1	4	
	(iii)	$u = 0.9 x 4^2$	D*		For using 'u' = $v(4)$
			M1		
			M1		For using $s = ut + \frac{1}{2} x7.2t^2$ with non-zero u
		$s = 14.4 \times 3 + \frac{1}{2} 7.2 \times 10^{-1}$	A1		(s = 75.6)
		3^2			
		19.2 + 75.6	M1		For adding distances for the two distinct stages
		Displacement is 94.8m	A1	5	
		OR			
		$v = \int 7.2 dt$	D*		For finding v(4)
		J	M1		Integration and finding non-zero integration constant
		t = 0, v = 14.4, c =			Nb Using $t=4$, $v=14.4$ gives $c = -14.4$
		14.4			$s = \int 7.2t - 14.4dt$
		$s = \int 7.2t + 14.4dt$			
		t = 0, s = 0, k = 0			Integration and finding integration constant.
		· •, • •, ĸ •			Nb t=4 with s=19.2 and v=7.2t-14.4 gives k=19.2 Substituting t = 2 (OP 7 into $z = 2$ (z^2 = 14.4t + 10.2)
			M1		Substituting t = 3 (OR 7 into s = $3.6t^2 - 14.4t + 19.2$)
		$s=3.6x3^2+14.4x3$	A1		$(s=75.6)$ (OR $s = 3.6 x7^2 - 14.4x7 + 19.2)$
		19.2 + 75.6 = 94.8	M1		Adding two distinct stages OR
		19.2 + 75.0 - 94.8 Displacement is 94.8m	A1		$s = 3.6 x7^2 - 14.4x7 + 19.2 = 94.8$ final M1A1
L		Displacement 15 94.011			
6	(i)	$\frac{1}{2} 25 v_{\rm m} = 8$ or	B*1		Do not accept solution based on isosceles or right
	(1)	$\frac{1}{2}Tv_{m} + \frac{1}{2}(25 - T)v_{m} =$	- 1		angled triangle
I		·····			

	8			
	Greatest speed is	D*B	2	
	0.64	1		
	ms ⁻¹			
(ii)		M1		For using $v = u + at$ or the idea that gradient represents acceleration
	$V = 0.02 \times 40$	A1		-
	V = 0.8	A1	3	
(iii)		M1		For using the idea that the area represents
				displacement. nb trapezium area is 16+8+8
		M1		For $A = \frac{1}{2} (L_1 + L_2)h$ or other appropriate breakdow
	$\frac{1}{2}(70 + T) \ge 0.8 = 40$ -	A1ft		$\frac{1}{2}(30 + T) \times 0.8 = 40 - 8 - \frac{1}{2} \times 40 \times 0.8$ ft cv(0.8)
	8			
	Duration is 10s	A1	4	
(iv)		M1		For using $v = u + at$ or the idea that gradient
				represents acceleration
	0=0.8+a(30-10)	A1ft		ft $cv(10)$ and $cv(0.8)$
	Deceleration is	A1	3	Accept -0.04 from correct work
	0.04ms^{-2}			*
	Or	M1		Using the idea that the area represents displacement.
	40-8-½ x 40 x 0.8-	A1ft		Ft cv(0.8 and 10)
	10x0.8	A1		Accept -0.04 from correct work. d=-0.04 A0
	=0.8(30-10)-a(30-			-
	$(10)^2/2$			
	Deceleration is			
	0.04ms^{-2}			

7	(i)	$R = 0.5gcos40^{\circ}$	B1		R = 3.7536
,	(1)	$F = 0.6 \times 0.5 \text{gcos}40^{\circ}$	M1		For using $F = \mu R$
		•		•	For using $r - \mu R$
		Magnitude is 2.25N AG	A1	3	
	(ii)		M1		For applying Newton's second law (either case) //slope, two forces
		$-/+0.5gsin40^{\circ} - F = 0.5a$	A1		Either case
		(a) Acceleration is 	A1		Accept 10.8 from correct working (both forces have the same sign)
		(b) Acceleration is	A1	4	Accept -1.79 from correct working (the forces have
			AI	4	opposite sign) Accept ! 1.8(0)
		1.79ms^{-2}			
	(iii)a)	$0 = 4 + (-10.8)T_1$	M1		Requires appropriate sign
		$T_1 = 0.370(3)$	A1		
					Accept 0.37
	b)		M1		For complete method of finding distance from A to highest point using a(up) with appropriate sign
		$0 = 4^2 + 2(-10.8)$ s or	A1		ft a(up) and/or T_1
		$s = (0 + 4) \ge 0.37/2$ or	ft		(s = 0.7405)
		$s = 4(0.370) + \frac{1}{2}(-1)$			
		$10.8)(0.370)^2$			
		/、 /	M1		For method of finding time taken from highest point to A and not using a(up)
		$0.7405 = \frac{1}{2} (1.79) T_2^2$	A1ft		ft a(down) and $cv(0.7405)$ (T ₂ = 0.908 approx)
		0.370 + 0.908	M1		Using $T = T_1 + T_2$ with different values for T_1 , T_2
		= 1.28s	A1	8	3 significant figures cao

Mark Scheme 4729 January 2007

1		com directly above lowest point	B1			
		$\tan \alpha = 6/10$	M1			
		α = 31.0	A1	3	or 0.540 rads	3
		1			2	
2		e = 1 = (y - x)/4	B1		or $\frac{1}{2} \times 0.2x^2 + \frac{1}{2} \times 0.1y^2 =$	
		0.8 = 0.2x + 0.1y	B1		$\frac{1}{2} \times 0.2 \times 4^{2} (B1/B1 \text{ for any } 2)$	
		solving sim. equ.	M1		not if poor quad. soln.	
		x = 4/3 only	A1	4		4
2	(i)	$x^2 = 21^2 + 2x40x9.8$	M1			
3	(1)	x = 21 + 2x40x9.8 x = 35	A1			
		$0 = y^2 - 2x40x9.8$	M1			
		y = 28	A1		may be implied	
		e = 28/35	M1			
		e = 0.8	A1	6	aef	
	(ii)	0.2x28 - 0.2x35	M1	0	must be double negative	
	(11)	I = 12.6	Al	2		8
		1-12.0	ΠΙ	2		0
4	(i)	$\frac{1}{2} \times 80 \times 5^2$ or $\frac{1}{2} \times 80 \times 2^2$ either KE	B1		1000/160	
-	(1)	70 x 25	B1		1750	
		80x9.8x25sin20°	B1		6703.6	
		$WD = \frac{1}{2} \times 80 \times 5^{2} - \frac{1}{2} \times 80 \times 2^{2} + 70 \times 25 + 80 \times 9.8 \times 25 \sin 20^{\circ}$	M1		4 parts	
		9290	Al	5		
	(ii)	Pcos30°x25	B1	5	or a=0.42	
	(11)	Pcos30°.25=9290 / Pcos30°-70-80x9.8sin20°=80a	M1		01 u 0.12	
		$P = 429 / \text{if } P \text{ found } 1^{\text{st}} \text{ then } P \cos 30^{\circ} x25 = 9290 \text{ ok}$	A1	3		8
		$1 - 429/11$ 1 100110 1 11111 10050 $x_{23} - 9290$ 0K	711	5		0
5	(i)	$D = 3000/5^2 = 120$	M1			
			A1	2	AG	
	(ii)	120 - 75 = 100a	M1			
		$a = 0.45 \text{ ms}^{-2}$	A1	2		
	(iii)	100x9.8x1/98	B1		weight component	
		$3000/v^2 = 3v^2 + 100x9.8x1/98$	M1			
		$3000 = 3v^4 + 10v^2$	A1		aef	
		solving quad in v ²	M1		$(v^2 = 30)$	
		$v = 5.48 \text{ ms}^{-1}$	A1	5	accept $\sqrt{30}$	9
6	(i)	$\operatorname{com} \operatorname{of} \Delta 4 \operatorname{cm} \operatorname{right} \operatorname{of} C$	B1			
		$1.5 \ge 10 + 7 \ge 20 = \overline{x} \ge 30$	M1			
			A1			
		$\overline{x} = 5.17$	A1		5 1/6 31/6	
		$\operatorname{com} \operatorname{of} \Delta 6 \operatorname{cm} \operatorname{above} E$	B1		or 3 cm below C	
		$4.5 \ge 10 + 6 \ge 20 = \overline{y} \ge 30$	M1			
			A1			
		$\overline{y} = 5.5$	A1	8		
	(ii)	$\tan\theta = 5.17/3.5$	M1	1	right way up and $(9-\overline{y})$	
		55.9° or 124°	A1	2	$\int \text{their } \overline{x} / (9 - \overline{y})$	
				-	dist to line of action of T	
	(;;;)	$d = 15 \sin 45^{\circ}$ (10.61)				
_	(iii)	$d = 15\sin 45^{\circ} (10.61)$	B1			
	(iii)	$d = 15\sin 45^{\circ} (10.61)$ Td = 30 x 5.17 T = 14.6	B1 M1 A1	3	allow Tx15 i.e. T vertical	13

7	(i)	Tsin30°	B1			
		$T\sin 30^\circ = 0.3x0.4x2^2$	M1	1	resolving horizontally	1
			A1			
		T = 0.96	A1	4		
	(ii)	R + Tcos30° = 0.3x9.8	M1		resolving vertically	
	. /		A1			
		R = 2.11	A1	3		
			AIV		✓ their T (2.94–Tcos30°)	
					, , , , , , , , , , , , , , , , , , ,	
	(iii)	$T_1 \sin 30^\circ = 0.3 \text{ x v}^2 / 0.4$	M1		or 0.3x0.4xw ²	
			A1		$(T_1 = 1.5v^2)$	
		$T_1 \cos 30^\circ = 0.3 \times 9.8$	B1		$(T_1 = 1.96\sqrt{3} = 3.3948)$	
		R = 0	B1		may be implied or stated	
		$\tan 30^{\circ} = v^2 / (0.4 \text{ x } 9.8)$ for elim of T ₁	M1		and v=0.4 ω (ω = 3.76)	
		v = 1.50	A1	6		13
;	(i)	v _v = 42sin30° (=21)	B1			
		$0 = 21^2 - 2x9.8xh$	M1			1
		h = 22.5	A1	3		1
	(ii)	$y_{1} = 4200020^{\circ} (-26.4)$	B1			
	(")	$v_h = 42\cos 30^\circ$ (=36.4)	B1			+
		$v_v = \pm v_h x \tan 10^\circ$			an 40 and 200 to a 400	
		$v_v = \pm 6.41$ or $21\sqrt{3} \tan 10^\circ$	A1	**	or 42cos30°.tan10°	
		-6.41 = 42sin30° - 9.8t	M1	**	must be –6.41(also see "or" x	
		1		**	2)	-
		t = 2.80	A1	**		
		<i>y</i> =42sin30°x2.8 – 4.9x2.8 ²	M1			_
		<i>y</i> = 20.4	A1√	**	✓ their t	
		$x = 42\cos 30^{\circ} \times 2.80$	M1			
		x = 102	A1		✓ their t	
						-
		$\sqrt{(x^2 + y^2)}$	<u>M1</u>	4.4		
		d = 104	A1	11		
	or	$6.41^2 = 21^2 + 2 \times -9.8s$	M1	**	vert dist first then time	
		s = 20.4	A1			
		$20.4 = 21t + \frac{1}{2} - 9.8t^2$	M1	**		
		t = 2.80	A1	**		
	or	22.5 – s and 6.41 ² =2x9.8s	M1	**	dist from top (s = 2.096)	
		y = 20.4	A1	**		
		$22.5 \& 2.1 = \frac{1}{2}.9.8t^2$	M1	**	2 separate times (2.143,	
					0.654)	
		t = 2.80	A1	**	2.143 + 0.654	14
		alternatively				
	(ii)	$y = x/\sqrt{3 - x^2/270}$ aef	B1		y=xtan30°-	
_					9.8x ² /2.42 ² .cos ² 30°	
		$dy/dx = 1/\sqrt{3} - x/135$	M1		for differentiating	
			A1		aef	Γ
		$dy/dx = -\tan 10^\circ$	M1		must be -tan10°	1
	1	$1/\sqrt{3} - x/135 = -\tan 10^{\circ}$	A1			
		solve for x	M1			1
		x = 102		1		1
			A1√		✓ on their dy/dx	
		$y = x/\sqrt{3} - x^2/270$	M1			
		<i>y</i> = 20.4	A1√		✓ their <i>x</i>	
		$\sqrt{(x^2+y^2)}$	M1			1
		<i>d</i> = 104	A1	(11)		

Mark Scheme 4730 January 2007

1	M1	For using the principle of conservation of energy
$\frac{1}{2} 0.6x5^2 - \frac{1}{2} 0.6v^2 = 0.6g(2x0.4) [v^2 = 9.32]$	A1	0.
[T + 0.6g = 0.6a]	M1	For using Newton's second law
[a = 9.32/0.4]	M1	For using $a = v^2/r$
T + 0.6g = 0.6x9.32/0.4	A1ft	ft incorrect energy equation
Tension is 8.1N	A1	6

2	$28\cos 30^{\circ} - 10\cos 30^{\circ}$ [= $\Delta v_{\rm H}$] =	B1		
	$(I/m)\cos\theta$]			
	$10\sin 30^{\circ} + 28\sin 30^{\circ}$ [= $\Delta v_{\rm V}$] =	B1		
	$(I/m)\sin\theta$]			
	$X = -I\cos\theta = -0.8885, Y = I\sin\theta =$	M1		For using mv change for
	1.083]			component or resultant
		M1		For using $I^2 = X^2 + Y^2$
	I = 1.40	A1		
	$[\tan \theta = 1.083/0.8885 \text{ or } 19/15.588]$	M1		For using $\theta = \tan^{-1}(Y/-X)$ or
				$\tan^{-1}(\Delta v_{\rm V} / \Delta v_{\rm H})$
	$\theta = 50.6$	A1	7	

	ALTERNATIVELY			
2		M1		For using cosine rule in correct triangle
	$(I/m)^2 = 28^2 + 10^2 - 2x28x10\cos 60^\circ$ [=604]	A1		C C
	$[I = 0.057 \sqrt{604}]$	M1		For using I = mv change
	I = 1.40	A1		
		M1		For using sine rule in correct triangle
	$(I/m)/sin60^\circ =$	A1		C
	$10/\sin(\theta - 30^\circ)$ or $28/\sin(150^\circ -$			
	θ)			
	$\theta = 50.6$	A1	7	

3	(i) $160a = 2aY$	M1		For taking moments for AB
				about B
	Component at B is 80N	A1	2	0.1(0.).1
	Component at C is 240N	Blft	3	$\frac{\text{ft } 160 + \text{Y}}{\text{F}}$
	(ii)	M1		For taking moments for BC
				about B or C (and using $X = E$) or for whole shout A
	$160a \cos 60^{\circ} + 2aF\sin 60^{\circ} = 240x2a \cos 60^{\circ}$	60° A1ft		F) or for whole about A
	$100a \cos 00 + 2ar \sin 00 - 240x2a \cos 0r$	00 AIIt		
	$80x2a\cos 60^\circ + 160a\cos 60^\circ = 2aX\sin 60^\circ$	0°		
	or	0		
	$240(2 + 2\cos 60^{\circ})a =$			
	$160a + 160(2 + \cos 60^{\circ})a +$			
	2aFsin60°			
	Frictional force is 92.4N	A1		
	Direction is to the left	B1	4	
	(iii) [92.4/240]	M1		For using $F = \mu R$
	Coefficient is 0.385	Alft	2	
		N(1		
4	(i)	M1		For using $T = mg$ and $T = \lambda e/L$
	$2.5 \circ 10/7 = 0.2 \circ$	= A1		λe/L
	3.5e/0/7 = 0.2g [e 0.392]	– AI		
	Position is 1.092m below O.	A1	3	AG
	(ii)	M1		For using Newton's second
				law
	0.2g - 3.5(0.392 + x)/0.7 = 0.2a	Alft		ft incorrect e
	a = -25x	Alft		ft incorrect e
	$[25A^2 = 1.6^2 \text{ or }$	M1		For using $A^2n^2 = v_{max}^2$ or
	$\frac{1}{2}(0.2)1.6^2 + 3.5x0.392^2/(2x0.7) +$			Energy at lowest point =
	0.2gA			energy at equilibrium point (4
	$= 3.5 x (0.392 + A)^2 / (2x0.7)$			terms needed including 2 EE
	A) /(2x0.7) Amplitude is 0.32m	A1ft	5	terms)
	(iii) $[x = 0.32 \sin^2 c]$	M1		For using $x = Asin nt or$
		1411		Acos($\pi/2$ -
				nt)
	x = 0.291	A1		
	$[v = 0.32x5\cos 2^{\circ} \text{ or } v^2 = 25(0.32^2 - 0.2)^{\circ}]$	91 ²) M1		For using $v = Ancos nt$ or
	or			$v^2 = n^2(A^2 - x^2)$ or
	$0.256 + 0.38416 + 0.2g(0.291) = \frac{1}{2} 0.2v^{2} + \frac{1}{2} 0.2v^{2} $			Energy at equilibrium point = energy at $x = 0.291$
				0.271
1	$2.5(0.683)^2$			
	$2.5(0.683)^2$ v ² = 0.443	A1		May be implied

5	(i) $[mg - mkv^2 = ma]$	M1		For using Newton's second
	$(v dv/dx)/(g - kv^2) = 1$	A1	2	law AG
	$\frac{(v uv/ux)(g - kv) - 1}{(ii) \left[-\frac{1}{2} \left[\ln(g - kv^2) \right]/k = x (+C) \right]}$	M1		For separating variables and
				attempting to integrate
	$[-(\ln g)/2k = C]$	M1		For using $v(0) = 0$ to find C
	$x = [-\frac{1}{2} \left[\ln \{ (g - kv^2)/g \} \right]/k$	A1		Any equivalent expression for x
	$[\ln\{(g - kv^2)/g\} = \ln(e^{-2kx})]$	M1		For expressing in the form $\ln f(v^2) = \ln g(x)$ or equivalent
	$v^2 = (1 - e^{-2kx})g/k$	A1		
		M1		For using $e^{-Ax} \rightarrow 0$ for +ve A
	Limiting value is $\sqrt{g/k}$	A1ft	7	AG
	(iii) $[1 - e^{-600k} = 0.81]$	M1		For using $v^2(300) = 0.9^2 g/k$
	$[-600k = \ln(0.19)]$	M1		For using logarithms to solve
				for k
	k = 0.00277	A1	3	
6	(i) $[u \sin 30^\circ = 3]$	M1		For momentum equation for
				B, normal to line of centres
	u = 6	A1	2	
	(ii) $[4\sin 88.1^\circ = v \sin 45^\circ]$	M1		For momentum equation for A, normal to line of centres
	v = 5.65	A1		
		M1		For momentum equation along line of centres
	$0.4(4\cos 88.1^{\circ}) - mu\cos 30^{\circ} = -0.4v\cos 45^{\circ}$	A1		
	m = 0.318	A1	5	
	(iii)	M1		For using NEL
	$0.75(4\cos\theta + u\cos 30^\circ) = v\cos 45^\circ$	A1		e
	$4\sin\theta = v\sin45^\circ$	B1		
	$[3\cos\theta + 4.5\cos 30^\circ = 4\sin\theta]$	M1		For eliminating v
	$8\sin\theta - 6\cos\theta = 9\cos^2\theta$	A1	5	AG
7	(i)(a) Extension = $1.2 \alpha - 0.6$	B1	•	-
/	$[T = mgsin \alpha]$	M1		For resolving forces
				tangentially
	$0.5 \times 9.8 \sin \alpha = 6.86(1.2 \alpha - 0.6)/0./6$	A1ft		
	$\sin \alpha = 2.8 \alpha - 1.4$	A1	4	AG
	(i)(b) [0.8, 0.756, 0.745, 0.742, 0.741, 0.741,]	M1		For attempting to find α_2 and α_3
	$\alpha = 0.74$	A1	2	
	(ii) $\Delta h = 1.2(\cos 0.5 - \cos 0.8)$	B1		
	[0.217]	51		
	[0.5x9.8x0.217 = 1.06355]	M1		For using Δ (PE) = mg Δ h
	$[6.86(1.2x0.8 - 0.6)^2/(2x0.6) = 0.74088]$	M1		For using $EE = \lambda x^2/2L$
	, , , ,]	M1		For using the principle of conservation of energy
	$\frac{1}{2} 0.5 v^2 = 1.063550.74088$	A1		Any correct equation for v^2
	Speed is 1.14ms^{-1}	A1 A1		
	Speed is 1.14his Speed is decreasing	B1ft	7	
L	speed is decreasing	DIII	1	

Mark Scheme 4732 January 2007

Penalize ove	r-rounding only once in paper, except qu 8(ii).		
1i	$\frac{1 - \binom{3}{10} + \frac{1}{5} + \frac{2}{5}}{\frac{1}{10}}$	M1 A1 2	or $\binom{3}{10} + \frac{1}{5} + \frac{2}{5} + p = 1$
ii	$\frac{3}{10} + 2 x^{1}/_{5} + 3 x^{2}/_{5}$ $\frac{19}{10}/_{10}$ oe	M1 A1 2	$\div 4 \text{or6} \Rightarrow M0A0$
Total	,10,00	4	
2i	$x = 20; y = 11; x^2 = 96; y^2 = 31; xy$		
	$ \begin{array}{l} =52) \\ S_{xx} = 16 \text{or } 3.2 \\ S_{yy} = 6.8 \text{or } 1.36 \\ S_{xy} = 8 \text{or } 1.6 \\ r = \frac{8}{\sqrt{(16x6.8)}} \text{or } \frac{1.6}{\sqrt{(3.2x1.36)}} \\ = 0.767 \ (3 \ \text{sfs}) \end{array} $	B1 B1 B1 M1 A1 5	$dep -1 \le r \le 1$ ft their <i>S</i> 's (<i>S_{xx}</i> & <i>S_{yy}</i> +ve) for M1 only
ii	Small sample oe	B1f 1	
Total		6	
3i	120	B1 1	not just 5!
iia	3 x 4! or 72 (÷ 5!)	M1	
IIu	³ / ₅ oe		oe, eg $\frac{72}{120}$
b	Starts 1 or 21 (both)	M1	12,13,14,15, (≥2 of these incl 21, or allow 1 extra) can be implied by wking
	$\frac{1}{5} + \frac{1}{5} \times \frac{1}{4}$	M1	or $5x 3!$ or $4! + 3!$ ($\div 5!$)
	$= \frac{1}{4}$ oe	A1 3	complement: full equiv steps for Ms
Total		6	
4ia	W&Y oe	B1 1	
b	Х ое	B1 1	
ii	Geo probs always decrease or Geo has no upper limit to x or $x \neq 0$	B1 1	Geo not fixed no. of values diags have fixed no of trials not Geo has +ve skew
iii	W Bin probs cannot fall then rise or bimodal	B1 B1dep 2	indep allow Bin probs rise then fall
Total		5	
5i	$\frac{\frac{2685 - \frac{140 \times 106.8}{8}}{3500 - \frac{140^2}{8}} \text{ or } \frac{2685 - \frac{140^2}{8}}{3500 - \frac{140^2}{8}} \frac{8x17.5x13.35}{3500 - 8x17 - 5x^2}$	M1	Correct sub in any correct formula for <i>b</i> (incl. $(x - \overline{x})$ etc)
	= ¹³⁶ / ₁₇₅ or 0.777 (3 sfs)	A1	100.0
	$y - \frac{106.8}{8} = 0.777(x - \frac{140}{8})$ y=0.78x -0.25 or better or $y = \frac{136}{175}x - \frac{1}{4}$	M1 A1 4	or $a = {}^{106.8}/_8 - 0.777 x^{140}/_8$ ft b for M1 ≥ 2 sfs sufficient for coeffs
ii	0.78 x 12 - 0.25 = 9.1 (2 sfs)	M1 Alf 2	M1: ft their equn A1: dep const term in equn
iiia	Reliable	B1	Just "reliable" for both: B1
b	Unreliable because extrapolating oe	B1 2	
Total		8	

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8(ii).

6i	$(1/2)^{3} \mathbf{x}^{2}/2$	M1 M1		or implied by $(^{1}/_{3})^{n} \times ^{2}/_{3}$
	$=\frac{2}{81}$ or 0.0247 (3 sfs)	A1	3	

ii	$(1/3)^3$	M1		or $\frac{2}{3}+\frac{1}{3}x^{2}/_{3}+(\frac{1}{3})^{2}x^{2}/_{3}$: M2
	$1 - (1/3)^3$	M1		one term omitted or extra or wrong: M1 1 - $\binom{1}{3}^4$ or 1- $\binom{2}{3} + \frac{1}{3}x^2/3 + \binom{1}{3}x^2/3$):M1
	$^{26}/_{27}$ or 0.963 (3 sfs)	A1	3	
iii	1 / 2/3	M1	•	
Total	= 3/2 oe	Al	2	
10181		8		
7i	$\frac{2}{9}$ or $\frac{7}{9}$ oe seen	B1		
	$\frac{3}{9}$ or $\frac{6}{9}$ oe seen	B1		
	$\frac{1}{8}$ or $\frac{7}{8}$ oe seen	B1		
	Correct structure	B1		ie 8 correct branches only,
				ignore probs & values
	All correct	B1	5	including probs and values,
				but headings not req'd
ii	$\frac{3}{10 \text{ x}^{7}/9} + \frac{7}{10 \text{ x}^{3}/9} + \frac{7}{10 \text{ x}^{6}/9}$	M2		or $\frac{3}{10}x^{7}/9 + \frac{7}{10}$ or $1 - \frac{3}{10}x^{2}/9$
	14			M1: one correct prod or any prod + $\frac{7}{10}$
	$\frac{14}{15}$ or 0.933 oe	A1	3	or $3/10 \text{ x}^{2}/9$
iii	$\frac{3}{10} x^{2}/_{9} x^{7}/_{8} + \frac{7}{10} x^{6}/_{9}$	M2		M1: one correct prod
	$^{21}/_{40}$ or 0.525 oe	A1	3	cao
	No ft from diag except: with replacement:	(i) s	tructu	re: B1 (ii) $^{91}/_{100}$: B2 (iii) 0.553: B2
Total		1		
8i	Med = 2	B1		cao
	LQ = 1 or $UQ = 4$	M1		or if treat as cont data:
				read cf curve or interp at 25 & 75
	IQR = 3	A1	3	cao
ii	Assume last value = 7 (or eg 7.5 or 8 or 8.5)	B1		stated, & not contradicted in wking
				eg 7-9 or 7,8,9 Not just in wking
	xf attempted ≥ 5 terms	M1		allow "midpts" in xf or x^2f
		A 1		
	2.6 or 3 sf ans that rounds to 2.6	A1		
	$x^2 f$ or $x-m)^2 f \ge 5$ terms	M1		
	$\sqrt{(x^2f/100 - m^2)}$ or $\sqrt{(x^2f/100 - m^2)^2}$			
	$\sqrt{(x-m)^2 f}/100$ fully correct but ft m	M1		dan M2
	1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7	A1		dep M3
			6	penalize > 3 sfs only once
iii	Median less affected by extremes or	B1	1	or median is an integer or mean not int.
	outliers etc (NOT anomalies)			or not affected by open-ended interval
				general comment acceptable
iv	Small change in var'n leads to lge change in IQR			
	UQ for W only just 4, hence IQR exaggerated orig data shows variations are similar	D1	1	for Old Moat LQ only just 1 & UQ only just 3
		B1	1	oe specific comment essential
V	OM % (or y) decr (as x incr) oe	B1	~	ranks reversed in OM or not rev in W
	Old Moat	<u>B1</u>	2	NIS
Total		1	3	

9i	$^{11}C_5 x (^{1}/_4)^6 x (^{3}/_4)^5$	M1	or $462 \times (^{1}/_{4})^{6} \times (^{3}/_{4})^{5}$
	0.0268 (3 sfs)	A1 2	
ii	$q^{11} = 0.05$ or $(1-p)^{11} = 0.05$	M1	$(any letter except p)^{11} = 0.05$ oe
	$\sqrt[11]{0.05}$	M1	oe or invlog $(\frac{\log 0.05}{11})$
	q = 0.762 or 0.7616	A1	11)
	p = 0.238 (3 sfs)	Alf 4	ft dep M2
iii	$11 \ge p \ge (1-p) = 1.76$ oe	M1	not $11pq = 1.76$
	$11p - 11p^2 = 1.76$ or $p - p^2 = 0.16$	A1	any correct equn after mult out
	$11p^2 - 11p + 1.76 = 0$ or $p^2 - p + 0.16 = 0$	A1	or equiv with $= 0$
	$(25p^2 - 25p + 4 = 0)$		-
	(5p-1)(5p-4) = 0		or correct fact'n or subst'n for their quad
	or $p = \frac{11 - \sqrt{(11^2 - 4x11x1.76)}}{11 - \sqrt{(11^2 - 4x11x1.76)}}$	M1	equ'n eg $p = \frac{1 \pm \sqrt{(1-4x0.16)}}{1 \pm \sqrt{(1-4x0.16)}}$
	2 x 11		2
	p = 0.2 or 0.8	A1 5	
Total		11	
	Total 72 marks		

Mark Scheme 4733 January 2007 For over-specified answers (> 6SF where inappropriate) deduct 1 mark, no more than once in paper.

1	22	$\mathbf{x} = 1$ ($\mathbf{x} = \mathbf{x}$ (\mathbf{x})	M1		$\Omega_{4} = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $
1	$\frac{22-\mu}{5}$	$= -\Phi^{-1}(0.242)$	M1 A1		Standardise with Φ^{-1} , allow +, "1 –" errors, cc, $\sqrt{5}$ or 5^2
=-0.7					Correct equation including signs, no cc, can be wrong Φ^{-1}
			B1	4	0.7 correct to 3 SF, can be +
	,		A1	4	Answer 25.5 correct to 3 SF
2	(i)	$900 \div 12 = 75$	B1	1	75 only
) True, first choice is random	B1	1	True stated with reason based on first choice
) False, chosen by pattern	B1	1	False stated, with any non-invalidating reason
	(iii)	Not equally likely	M1		"Not equally likely", or "Biased" stated
		e.g. $P(1) = 0$, or triangular	A1	2	Non-invalidating reason
3	Let R b	e the number of 1s	B1		B(90, 1/6) stated or implied, e.g. Po(15)
		$R \sim B(90, 1/6)$	B1		Normal, $\mu = 15$ stated or implied
		≈ N(15, 12.5)	B1		12.5 or $\sqrt{12.5}$ or 12.5 ² seen
		$\frac{13.5-15}{[=-0.424]}$	M1		Standardise, <i>np</i> and <i>npq</i> , allow errors in $$ or cc or both
		$\sqrt{12.5}$	A1		$\sqrt{\text{and cc both right}}$
		0.6643	A1	6	Final answer, a.r.t. 0.664. [Po(15): 1/6]
4	(i)	$\overline{w} = 100.8 \div 14 = 7.2$	B1		7.2 seen or implied
			M1		Use Σw^2 – their \overline{w}^2
		$\frac{938.70}{14} - \overline{w}^2 \ [= 15.21]$			
		× 14/13	M1		Multiply by $n/(n-1)$
		= 16.38	A1	4	Answer, a.r.t. 16.4
	(ii)	N(7.2, 16.38 ÷ 70)	B1		Normal stated
		[= N(7.2, 0.234)]	B1√		Mean their \overline{w}
			В1√	3	Variance [their (i) $\sqrt{2}$ ÷ 70], allow arithmetic slip
5	(i)	$\lambda = 1.2$	B1		Mean 1.2 stated or implied
	()	Tables or formula used	M1		Tables or formula [allow ± 1 term, or "1 –"] correctly used
		0.6626	A1	3	Answer in range [0.662, 0.663]
					[.3012, .6990, .6268 or .8795: B1M1A0]
	(ii)	B(20, 0.6626√)	M1		B(20, p), p from (i), stated or implied
		$^{20}C_{13} 0.6626^{13} \times 0.3374^{7}$	M1		Correct formula for their p
		0.183	A1	3	Answer, a.r.t. 0.183
	(iii)	Let <i>S</i> be the number of stars	B1		Po(24) stated or implied
		$S \sim Po(24)$	B1		Normal, mean 24
		≈ N(24, 24)	В1√		Variance 24 or 24^2 or $\sqrt{24}$, $\sqrt{16}$ if 24 wrong
		$\frac{29.5-24}{\sqrt{24}}$ [=1.1227]	M1		Standardise with λ , λ , allow errors in cc or $$ or both
		$\sqrt{24}$ $\left[-\frac{11227}{3}\right]$	A1		$\sqrt{\lambda}$ and cc both correct
		0.8692	A1	6	Answer, in range [0.868, 0.8694]

6	(i)	$\left[ax + \frac{bx^2}{2}\right]_0^2 = 1$	M1		Use total area = 1
	()	$\left \frac{dx + \frac{1}{2}}{2} \right _{0} = 1$	B1		Correct indefinite integral, or convincing area method
		2a + 2b = 1 AG	A1	3	Given answer correctly obtained, "1" appearing before
					last line [if $+ c$, must see it eliminated]
	(ii)	$\left[\frac{ax^2}{2} + \frac{bx^3}{3}\right]_{a}^{2} = \frac{11}{9}$	M1		Use $\int xf(x)dx = 11/9$, limits 0, 2
		$\begin{bmatrix} 2 & 3 \end{bmatrix}_0^{-9}$	B1		Correct indefinite integral
		$2a + \frac{8b}{3} = \frac{11}{9}$	A1		Correct equation obtained, a.e.f.
		5 /	M1		Obtain one unknown by correct simultaneous method
		Solve simultaneously	A1		a correct, $1/6$ or a.r.t 0.167
		$a = \frac{1}{6}, b = \frac{1}{3}$	A1	6	<i>b</i> correct, 1/3 or a.r.t. 0.333
	(iii)	e.g. $P(<11/9) = 0.453$, or	M1		Use $P(x < 11/9)$, or integrate to find median m
			M1		Substitute into $\int f(x) dx$, $\sqrt{0}$ on <i>a</i> , <i>b</i> , limits 0 and 11/9 or <i>m</i>
		$\left[ax + \frac{bx^2}{2}\right]_{m}^{m} = 0.5, m = 1.303 \text{ or } \frac{\sqrt{13} - 1}{2}$			[if finding <i>m</i> , need to solve 3-term quadratic]
			A1		Correct numerical answer for probability or <i>m</i>
		Hence median > mean	Al	4	Correct conclusion, cwo
					["Negative skew", M2; median > mean, A2]
7	(i)	$H_0: p = 0.35$ [or $p \ge 0.35$]	B1		Each hypothesis correct, B1+B1, allow $p \ge .35$ if .35 used
	()	$H_1: p < 0.35$	B1		[Wrong or no symbol, B1, but r or x or \overline{x} : B0]
		B(14, 0.35)	M1		Correct distribution stated or implied, can be implied by
	α:	$P(\le 2) = 0.0839 > 0.025$			N(4.9,), but <i>not</i> Po(4.9)
	β:	$CR \le 1$, probability 0.0205	A1		0.0839 seen, or $P(\le 1) = 0.0205$ if clearly using CR
	1	Do not reject H_0 . Insufficient	B1		Compare binomial tail with 0.025, or $R = 2$ binomial CR
		evidence that proportion that can	M1		Do not reject H_0 , $$ on their probability, <i>not</i> from N or Po
		receive Channel C is less than 35%	Al۱	/ 7	or P(<2); Contextualised conclusion $$
	(ii)	B(8, 0.35): P(0) = 0.0319	M1		Attempt to find P(0) from $B(n, 0.35)$
		B(9, 0.35): P(0) = 0.0207	A1		One correct probability $[P(\le 2) = .0236, n = 18: M1A1]$
			A1		Both probabilities correct
		Hence largest value of <i>n</i> is 8	A1	4	Answer 8 or \leq 8 only, needs minimum M1A1
	or	$0.65^n > 0.025; n \ln 0.65 > \ln 0.025$	M11		$p^n > 0.025$, any relevant p; take ln, or T&I to get 1 SF
		8.56; largest value of $n = 8$	A1/		In range [8.5, 8.6]; answer 8 or \leq 8 only
8	(i) α:		M1		Standardise 100.7 with $\sqrt{80}$ or 80
Ũ	(I) α.	$\frac{100.7 - 102}{5.6 / \sqrt{80}} = -2.076$	A1		a.r.t. -2.08 obtained, must be $-$, <i>not</i> from $\mu = 100.7$
		Compare with -2.576	B1	3	-2.576 or -2.58 seen and compare z, allow both +
	or β :	$\Phi(-2.076) = 0.0189$	M1		Standardise 100.7 with $\sqrt{80}$ or 80
	<i>or</i> p.	$\begin{bmatrix} or \ \Phi(2.076) = 0.981 \end{bmatrix}$	A1		a.r.t. 0.019, allow 0.981 only if compared with 0.995
		and compare with 0.005 [or 0.995]	B1	(3)	Compare correct tail with 0.005 or 0.995
			M1	(5)	This formula, allow +, 80, wrong SD, any k from Φ^{-1}
	or γ :	$102 - \frac{k \times 5.6}{\sqrt{80}}$	1111		This formula, and ψ , so, wrong 5D, any k from Φ
		k = 2.576, compare 100.7	B1		k = 2.576/2.58, – sign, and compare 100.7 with CV
		100.39	A1	(3)	CV a.r.t. 100.4
		Do not reject H_0	M1		Reject/Do not reject, $$, needs normal, 80 or $\sqrt{80}$, Φ^{-1} or
		Insufficient evidence that quantity	1411		equivalent, correct comparison, <i>not</i> if clearly $\mu = 100.7$
		of SiO_2 is less than 102	A1	2	Correct contextualised conclusion
	(::) (-)		M1		One equation for <i>c</i> and <i>n</i> , equated to Φ^{-1} , allow cc,
	(II) (a)	$\frac{c-102}{5.6/\sqrt{n}} = -2.326$	B1		wrong sign, σ^2 ; 2.326 or 2.33
			A1	3	Correctly obtain given equation, needs in principle to
		$102 - c = \frac{13.0256}{\sqrt{n}}$ AG	111	5	have started from $c - 102, -2.326$
	(1)		M1		Second equation, as before
	(b)	$\frac{c-100}{5.6/\sqrt{n}} = 1.645$ or $c-100 = \frac{9.212}{\sqrt{n}}$	A1	2	Completely correct, aef
		$3.0/\sqrt{n}$ \sqrt{n}	лі	4	completely concer, act
	(c)	Solve simultaneous equations	M1		Correct method for simultaneous equations, find <i>c</i> or \sqrt{n}
		$\sqrt{n} = 11.12$	A1		Correct method for simulateous equations, find c of \sqrt{n} \sqrt{n} correct to 3 SF
		$n_{min} = 124$	A1		$n_{min} = 124$ only
		$n_{min} - 124$ c = 100.83	Al	4	$n_{min} = 124$ only Critical value correct, 100.8 or better
		100.05	111	т	

Mark Scheme 4734 January 2007

1		$T) = E(X) + \lambda E(Y)$ $0 = 45 + 33\lambda$	M1		Use E($(X + \lambda Y)$
		$= \frac{5}{3} \text{ AG}$		A1	2	aef
	(ii)	$Var(T) = Var(X) + (5/3)^2 Var(Y)$ = 256		M1 A1		
			B1√	3	ft varia	ance
	(iii)	Same student for <i>X</i> and <i>Y</i> so independence unlikely.	B1	1	Sensib	le reason
2	(i)	Use $3a/2 = 1$		B1	1	Or similar
	(ii)	$y = \frac{2}{3x}$ $y = 1 - \frac{1}{3x}$		B1 M1A1	3	M1 for correct gradient B1M1A0 if not y=
	(iii)	$f(x) = \begin{cases} \frac{2}{3}x & 0 \le x \le 1 \\ 1 - \frac{1}{3}x & 1 < x \le 1 \end{cases}$	≤ 1 ≤ 3.			
				B1√	1	ft (ii)
	(iv)	$\int_{0}^{1} \frac{2}{3} x^{2} dx + \int_{1}^{3} (x - \frac{1}{3} x^{2}) dx$		M1		One correct, with limits
		$\left[\frac{2}{9}x^3\right]^1 + \left[\frac{1}{2}x^2 - \frac{1}{9}x^3\right]^3$		A1√A1	$\overline{\mathbf{v}}$	ft from similar f
		= 4/3		A1	4	aef
}	norma	sumes breaking strengths have nor al distributions variances	mal	B1 B1	2	
	(ii) H ₀	$:\mu_T = \mu_{U}, \text{ H}_1: \mu_T > \mu_U$ where μ_T, μ_U are means for		B1		For both hypotheses
	$\overline{x}_{\tau} = 1$	treated and untreated thread. 18.05, $\overline{x}_{U} = 17.26$		B1		May be implied below by 0.79
	•	0.715, $s_U^2 = 0.738$		B1		Allow biased, 0.596, 0.590 if s^2
	$s^2 = (5$	5×0.715 + 4×0.738)/9		M1	*****	=(6×0.596 + 5×0.590)/9
	EITHI = 1.5	ER: $(18.05 - 17.26)/[s\sqrt{(1/5+1/6)}]$	MI	A1	With p	ooled variance est.
	Reject	are correctly with 1.383 H_0 and accept there is sufficient		M1		
		the that mean has increased so that atment has been successful.		A1√		Conclusion in context. Ft 1.532
	OR: Ž	$\overline{X}_T - \overline{X}_U \ge ks\sqrt{1/5 + 1/6}; = 0.713$	3	M1A1		Allow $>$ or $=$
	0.79 >	0.713, reject H ₀ etc		M1A1 ⁻	8 √	Or equivalent. Ft 0.713

4	(i) $s^2 = \frac{1}{11}(2604.4 - 177.6^2/12)$ = 1.0836	M1	A1	aef	
	Use $\overline{x} \pm t \sqrt{\frac{s^2}{12}}$		M1		
	t = 2.201 $\overline{x} = 177.6/12 = 14.8$ (14.14,15.46), (14.1, 15.5)		B1 A1 A1	6	
	(ii) EITHER: $(14.8 - 15.4)/(\sqrt{(s^2/12)})$ = -1.997 Compare correctly with -1.796 Reject H ₀ and accept that there is	M1	M1 A1		With their variance
	evidence that the mean is less than 15.4	A1		In conte	ext. Ft – 1.997
	OR: $\overline{X} - 15.4 \le -k\sqrt{\frac{s^2}{12}}$; $\overline{X} \le 14.86$		M1A1		Allow < or =
	14.8 < 14.86, reject H ₀ etc		M1A1	√4	Or equivalent. Ft 14.86
5	(i) 978/1200 = 0.815		B1	1	
5	(i) $978/1200 = 0.815$ (ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$		B1 M1	1	Reasonable variance
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645			1	-
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$		M1	1	Reasonable variance ft p Allow 1199
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645		M1 B1	4	-
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645 $\sqrt{(0.815 \times 0.185/1200)}$ (0.797,0.833) (iii) If a large number of such samples w taken, p would be contained in about 90		M1 B1 A1√ A1	4	ft <i>p</i> Allow 1199 Interval B1 if idea correct but badly
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645 $\sqrt{(0.815 \times 0.185/1200)}$ (0.797,0.833) (iii) If a large number of such samples w		M1 B1 A1√		ft p Allow 1199 Interval
5	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$ z = 1.645 $\sqrt{(0.815 \times 0.185/1200)}$ (0.797,0.833) (iii) If a large number of such samples w taken, p would be contained in about 90		M1 B1 A1√ A1	4	ft <i>p</i> Allow 1199 Interval B1 if idea correct but badly

6	(i) $\int_{1}^{t} \frac{3}{x^4} dx$	M1	Any variable	
	$\mathbf{F}(t) = \begin{cases} 1 - \frac{1}{t^3} & t \ge 1, \\ (0 & \text{otherwise.}) \end{cases}$	A1	2	
	(ii) $G(y) = P(Y \le y)$ = $P(T \le y^{1/3})$ = $F(y^{1/3})$ = $1 - 1/y$ g(y) = G'(y) M1 = $1/y^2, y \ge 1$ AG	M1 A1 M1 A1 √	ft F(<i>t</i>)	
	$= 1/y^2, y \ge 1$ AG	A1	6	
	(iii) EITHER $\int_{1}^{\infty} \frac{\sqrt{y}}{y^2} dy$ OR $\int_{1}^{\infty} \frac{3t^2}{t^4} dt$	M1		
	$\begin{bmatrix} -2y^{-1/2} \end{bmatrix}_{1}^{\infty} \qquad \begin{bmatrix} -2t^{-3/2} \end{bmatrix}_{1}^{\infty}$ $= 2$	B1 A1	3	
7	(i)(a) H ₀ : Eye colour and reaction are not associated.	B1	Or equivalent (independent, or unrelated)	
	H₁: Eye colour and reaction are associated(b) 65×39/140	B1 B1	2 1	
	(c) $6.11^2/18.11 + 5.3^2/11.7 + 0.81^2/9.19$ 2.061 + 2.401+ 0.071 4.533, 4.53 AG A1	M1 A1 3	Or equivalent ; one correct At least 3 dp here But accept from 2 dp	
	(d) $v = 4$ Use tables to obtain $\alpha = 2\frac{1}{2}$	B1 B1	Stated or implied 2	
	(ii) H ₀ : $p_{BL} = p_{BR} = 0.4$, $p_O = 0.2$ B1 (H ₁ : At least two prob. not as above) E values 56 56 28 $\chi^2 = 9^2/56 + 14^2/56 + 8^2/28$ = 5.839	M1A1 M1 A1	Or in words, in terms of probs or proportions Accept 5.84	
hypothe	SR: If three tests for p then count only	M1 7	M1A0 if 5.991 seen and consistent conclusion but t no explicit comparison	he
	$p_{BR} = 0.4.$ (42/140 - 0.4)/ σ M1 $\sigma = \sqrt{(0.4 \times 0.6/140)}; -2.415$ Compare with -196; conclusion in context	A1A1 M1A1	Max $6/7$ (with H_0)	

Mark Scheme 4736 January 2007

1	(i)	10 4 2 3 5	M1	First bundle starting with 10 4 2 and has at least	
1	(i)	13 7 2 2	1011		
			1.11	one more bag in it	
		4 5 8 5 3	M1	Second bundle correct	503
		10 5 5 3	A1	All bundles correct	[3]
	(ii)			A value missing from written out list may be	
		Decreasing order:		treated as a misread and lose the A mark only	
		13 10 10 8 7 5 5 5 5 5 4 4 3 3 3 2 2 2	M1	Sorting into decreasing order (may be implied	
				from first bundle starting with 13)	
		13 10 2		If each row sorted, award first M1 only	
		10 8 7	M1	Second and third bundles correct	
		5 5 5 5 5			
		4 4 3 3 3 2 2	A1	All bundles correct	[3]
	(iii)	Each person has roughly the same number of bags	B1	Saying that (i) gives a more even/equal allocation	- 1- 1
	()	or the total weights are more evenly spread	21		[1]
		<u>or</u> the total weights are more evening spread		Five bundles in either part \bigoplus B0	[1]
				Total =	7
2	(i)	a = number of apple cakes	B1	Identifying variables as 'number of cakes'	
		b = number of banana cakes	B1	Indicating <i>a</i> as apple, <i>b</i> as banana and <i>c</i> as cherry.	
		c = number of cherry cakes			[2]
	(ii)	$4 \times 30 = 3 \times 40 = 4 \times 30 = 120$	M1	Any reasonable attempt	
		$\frac{a}{30} + \frac{b}{40} + \frac{c}{30} = 30 \times 40 \times 30$			
		$4a + 3b + 4c \le 120$ or $X = 4$, $Y = 3$, $Z = 4$	A1	4, 3 and 4	[2]
	(iii)	$a + b + c \ge 30$ (or $a + b + c = 30$)	B1	Constraint from total number of cakes correct	
	()	$0 \le a \le 20, 0 \le b \le 25, 0 \le c \le 10$	M1	All three upper constraints correct	
		(no need to say 'all integer')	A1	All three lower constraints correct also	[3]
	(iv)	4a+3b+2c	B1	Any multiple of this expression	[1]
	(1)		21	Total =	8
3	(i) a	9×2 = 18	B1	18	[1]
	b	Since the graph is simple, the two nodes of order	B1	Explicitly using the fact that the graph is simple	
	~	5 are each connected to every other node and	B1	Deducing that each node has order at least 2	
		hence every node has order at least 2 (exactly 2)		or that all other nodes have order 2	
				A diagram on its own is not enough.	[2]
	c	$3 \times 5 = 15$ and $18 - 15 = 3$	B1	Or, the nodes of order 5 contribute $5+4+3 = 12$	
		but the orders of the other nodes must sum to at		arcs	
		least $3 \times 3 = 9$ (must sum to more than 3)	B1	But there are only 9 arcs available	[2]
	(ii)		M1	A simply connected graph with 6 nodes and 9	
	()	or equivalent		arcs, with at least one odd node	
			A1	For such a graph with node orders 1, 3, 3, 3, 3, 5	[2]
	(iii)	••	M1	A simply connected graph with 6 nodes and 9	[~]
	(111)	or equivalent	1411	arcs, with at least one even node	
			A1	For such a graph with node orders 2, 2, 2, 4, 4, 4	[2]
			ЛІ		
				Total =	9

(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1 dep	FIRST THREE MARKS ARE FOR WORK ON THE TABLE ONLY (Starting by) choosing row E in column A Choosing more than one entry from column A	
	E 2 4 4 2 0 6 6 F 5 7 6 6 6 0 10 G 6 6 7 4 6 10 0	A1	Correct entries chosen (or all transposed)	
	Order: <i>A E D B C G F</i> Minimum spanning tree:	B1	Correct order, listed or marked on arrows or table, or arcs listed AE ED DB BC DG AF	
	A B C D D C F G	B1	Tree (correct or follow through from table, provided solution forms a spanning tree)	
	Total weight: 16 (or 1600 m)	B1	16 or 1600m (or follow through from table or diagram, provided solution forms a spanning tree)	[0
(ii)	Travelling salesperson (problem)	B1	Identifying TSP by name	[]
(iii)	Two shortest arcs from <i>H</i> : $12 + 13 = 25$ 25 + 16 = 41	B1 M1	12 + 13 or 25, or implied from final answer Adding their 25 to their 16 or for 41 (must be using two arcs from <i>H</i>)	
	4100 m	A1	4100 m or 4.1 km (correct and with units)	[3
(iv)	H A E D B C F G H	M1 A1	(H) A E D B C Correct tour	
	12+2+2+2+1+6+10+16 = 51	M1	A substantially correct attempt at sum	1
		A1	5100m or 5.1 km (correct and with units)	۲

(i)				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Correct temporary labels at <i>B</i> to <i>G</i> , no extras	
	4 7 7			
		M1	Correct temporary labels at H to J , no extras	
	A C F H II 0 2 2 6/7 6 8 9	A1	All temporary labels correct	
		B1	Order of becoming permanent correct	
			(follow through their permanent labels)	
	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 6 \\ 5 \\ 7 \\ 6 \end{array}$	B1	All permanent labels correct	
	Note: <i>H</i> may have only a temporary label if left until last			
	Route: ADGJK	B1	Correct route	
	Number of speed cameras on route: 8	B1	8 (cao)	[
(ii)	Odd nodes: A I J K	M1	Identifying or using A I J K	
	$A I = 7 \qquad AJ = 6 \qquad AK = 8$ $JK = \frac{2}{9} \qquad IK = \frac{4}{10} \qquad IJ = \frac{6}{14}$	A1 A1	Weight of AI + weight of $JK = 9$ Weight of AJ + weight of $IK = 10$ (follow through weight of AI , AJ from (i) if necessary)	
	Repeat AI and $JK \Rightarrow AB BI$ and JK			
	Route (example): <i>KJDABIKJGKHGFHEFCGDCABC</i> <i>EBIEK</i>	M1 A1	A list of 28 nodes that starts and ends with <i>K</i> Such a list that includes each of <i>AB</i> , <i>BI</i> , <i>JK</i> (or	
	Number of speed cameras on route: 81	B1	reversed) twice 72 + weight of their least pairing	[
(iii)	The only odd nodes are <i>I</i> and <i>J</i> so she only needs to repeat $IJ = 6$	B1	Identifying <i>I</i> and <i>J</i> or <i>IJ</i> (not just implied from 6 or 72+6 or 78)	I
	72 + 6	M1	Correct calculation (may be implied from 78)	
1	= 78	A1		1

⁽ⁱ⁾ P	x y z s t	B1	Correct use of two slack variable columns
1	-3 5 -4 0 0 0	B1	\pm (-3 5 -4) in objective row
0	1 2 -3 1 0 12 2 5 -8 0 1 40		
0	2 5 -8 0 1 40	B1	1 2 -3 12 and 2 5 -8 40 in constraint rows
(ii)	The entries in rows 2 and 3 of the <i>z</i> column are negative	B1	Entries for potential pivots are not positive
	Pivot on 1 in x column	B1	Correct pivot choice (cao) (stated or entry ringed)
	x and z columns have negative entries in obj. row		
	but no value in z column is positive so choose x		Follow through their table
	$12 \div 1 = 12, 40 \div 2 = 20$	B1	'Negative in top row for x' and a correct
	Least positive ratio is 12 so pivot on the 1		explanation of choice of row 'least ratio $12 \div 1$ '
(iii)			Follow through their tableau if possible
P	xyzst	M1	Correct method evident
1	<u>x y z s t</u> 0 11 -13 3 0 36		
0	1 2 -3 1 0 12	A1	Correct tableau (ft if reasonable and possible,
0	0 1 -2 -2 1 16		column representing RHS of equations must
			contain non-negative entries)
	x = 12, y = 0, z = 0	B1	Correct non-negative values for their tableau
(iv)	z can increase without limit and increasing z will	B1	Discussing the effect of increasing z
	increase P		Not just referring to pivoting in tableau
(v)	Initial tableau is unchanged except entry in z col		
	of obj. row becomes +40	B1	Describing change to obj. row of initial tableau
	First iteration tableau is also unchanged except		or showing tableau that results
	for this entry which becomes 31	B1	Identifying 31 instead of -13 (cao)
	26	B1	No other changes
(;)	$\frac{36}{2}$	B1	36 stated (cao) 52
(vi)	Adding the constraints gives $3x - 5y + 7z \le 52$ so $Q \le 52$	B1	52
(vii)	$x - 3z = 12 \text{ and } 2x + 10z = 40$ (Accept \leq)	M1	Eliminating <i>y</i> terms (may be implied)
	$\mathbf{\Phi} \ 10z + 6z = 40 - 24$	M1	Trying to solve simultaneous equations
	$\bigoplus x = 15$ and $z = 1$	A1	Correct values (may imply method marks)
			Total =

Mark Scheme 4737 January 2007

1	(i)	The Hung	arian algo	orithm find	ls the mini	mum cost			
1	(-)	allocation							
		to convert					B1	A valid reference to maximising/minimising	[1]
	(ii)			entry from					
	()	Attic Back Down Front				Front			
		Phil	1	5	6	2			
		Rob	5 0 5	4	B1	Correctly subtracting each entry from 6 (cao)			
		Sam	2	4	4	3			
		Tim	3	1	6	6			
		Reduce	rows			<u> </u>			
			0	4	5	1			
			5	0	5	4	M1	Reducing rows first	
			0	2	2	1			
			2	0	5	5			
		Then reduce columns						The sector is a set of sector	
			0	4	3	0	M1 dep	Then reducing columns	
			5	0	3	3			
			0	2	0	0	A1	A correct reduced cost matrix from rows reduced	
		2 0 3 4				4	AI	first (cao)	
		Cover 0'	's using 3	lines					
		0 4 3 0							
		5 0		0	3	3 3	M1	Covering zeros using minimum number of lines	
			0	2	0	0		and augmenting by (their) 2	
		2 0 3 4						and adjinenting by (then) 2	
		Augmen	t by 2				A1		
			0	6	3	0			
			3	0	1	1		A correct augmented matrix (cao) from rows	
			0	4	0	0		reduced first	
			0	0	1	2			
		Phil = Fro							
		Rob = Ba							
		Sam = Do		room					
		Tim = Att	tic room				B1	Correct matching	[7]
								Total =	8
2	(i)	16 hours	-				B1	16 with units	503
		A, B, D, F	,. 		- r - r - r		B1	All four critical activities and no others	[2]
	(ii) \	Norkers							
	4	4 Tî							

	M1	A reasonable attempt at a resource histogram
	A1	An entirely correct graph with scales and labels
time (hours)		
tart C at time 3	B1	<i>C</i> and <i>S</i> or <i>after A</i> or <i>with B</i>
tart E at time 8	B1	'E' and '8' or 'after B' or 'with D'
tart G at time 16	B1	'G' and '16' or 'after F '
Complete in 19 hours	B1	19
tart tart	E E at time 8 t G at time 16	$ \begin{array}{c} E \text{ at time 8} \\ F \text{ G at time 16} \end{array} \qquad \qquad \begin{array}{c} B1 \\ B1 \\ \end{array} $

3	(i)	-5	B1	-5	[1]
	(ii)	Because $-3 < 2$ in column <i>Y</i>	M1	Either of these, possibly with others	
		and $2 > -2$ in row Y	A1	Both of these comparisons and no others	[2]
	(iii)	Play-safe for Rebecca is Z	B1	Indicating row Z	
		Play-safe for Claire is Y	B1	Indicating column Y	
		Best choice is X	B1 ft	The correct choice with their play-safe	[3]
	(iv)	For Rebecca,			
		$-1 >$ smaller of $\{-3, \text{ value that 5 becomes}\}$	B1	This, or equivalent, or 5 is not in the play-safe row	
		For Claire,			
		$2 < \text{larger of } \{3, \text{ value that } 5 \text{ becomes} \}$	B1	This, or equivalent	
				(but NOT '5 is not in the play-safe column')	[2]
				Total =	8

(i)	5p - 4(1-p)	M1	This, or implied	
	= 9p - 4	A1	9p - 4 or $-4 + 9p$	
(ii)				
		M1	Correct structure to graph	
		A1	Line $E = 9p - 4$ plotted from (0,-4) to (1, 5)	
		A1	Line $E = 3 - 6p$ plotted from (0, 3) to (1,-3)	
	0.1 0.2 0.3 0 0.5 0.6 0.7 0.8 0.9 1	A1	Line $E = 1 - 3p$ plotted from (0, 1) to (1,-2)	
			Withhold an A1 for horizontal scale beyond 0 to	
			1	
(iii)	9p - 4 = 1 - 3p	M1	Solving the correct pair of lines for their graph	
	$\Rightarrow p = 5/12 \text{ or } 0.41 \text{ to } 0.42 \text{ (or better)}$	A1 ft	Correct value for their lines	
(iv)	If Colin plays X or Z, Rowan's expected winnings	B1	Showing why it is +0.25 for Colin	
	are -0.25 so Colin's expected winnings are +0.25			
		54		
	Even if Colin plays optimally he cannot expect, in	B1	Realising that Colin need to play his optimal	
	the long run, to do better on average than to win		strategy as well as Rowan	
	what Rowan loses.			
			Total =	

	(i)	4+2+4+	0+5				M1	At least four correct terms	
5	(1)	= 15	0.0				Al	15 from correct calculation	[2]
	(ii)	Subtract 3 from <i>SA</i> , <i>AD</i> , <i>DT</i> and add 3 to <i>TD</i> , <i>DA</i> ,						Correctly subtracting along one of the three flow	[-]
	(11)	AS	5 110111	511, 112, 1		10, 011,	M1	augmenting routes	
			2 from	SR RE F	ET and add 2 to 7	TE ER	M1	Correctly adding along one of the three flow	
		BS	2 1101117	5 <i>D</i> , <i>DL</i> , <i>L</i>		ц, цр,	1411	augmenting routes	
		Subtract 2 from SC, CF, FT and add 2 to TF, FC, CS eg Route SCET						All changes correct and no other changes made	
								The changes correct and no other changes made	[3]
	(iii)							Any valid flow augmenting route (not ft)	[5]
	(111)	Flow					B1 B1 ft	Maximum extra flow on their route	[2]
	(iv)			= 11 litre	s per second		B1	11 with units	[~]
	(1V)				C, D, E, F, T		B1	This cut described in this way	[2]
	(\mathbf{v})	eg	- {5}, 1	$- \{A, D, C\}$	$\cup, D, L, I', I $		DI	This cut described in this way	[4]
	(v)	eg					M1	At each vertex, flow in = flow out	
					5		1011	At each vertex, now in – now out	
		$\left\langle -\frac{2}{2}\right\rangle$					M1	On each arc, flow \leq capacity	
			5 3				1011	On each arc, now <u><</u> capacity	
				~~			A1	A valid directed flow of 11	
				2			AI	A valid directed flow of 11	
		Δ						T-4-1	[3]
								Total =	12
			-					1 otal =	12
6	(i)	Stage	State	Action	Working	Maximin	1	1 otal =	· 12
6	(i)	Stage 1	0	0	4	4	 		- 12
6	(i)	1	0 1	0	4 3	4 3			
6	(i)		0	0 0 0	4 3 min(6, 4) = 4	4			
6	(i)	1	0 1	0	4 3	4 3	B1	Maximin value correct for (2;0)	
6	(i)	1	0 1	0 0 0	4 3 min(6, 4) = 4	4 3		Maximin value correct for (2;0)	
6	(i)	1	0 1 0	0 0 0 1	$\begin{array}{c} 4 \\ 3 \\ min(6, 4) = 4 \\ min(2, 3) = 2 \\ min(2, 4) = 2 \end{array}$	4 3 4	M1	Maximin value correct for (2;0) Completing working column of (2;1)	
6	(i)	1	0 1 0 1	0 0 1 0 1	$\begin{array}{c} 4 \\ 3 \\ min(6, 4) = 4 \\ min(2, 3) = 2 \\ min(2, 4) = 2 \\ min(4, 3) = 3 \end{array}$	4 3		Maximin value correct for (2;0)	
6	(i)	1	0 1 0	0 0 1 0 1 0	$\begin{array}{c} 4 \\ 3 \\ min(6, 4) = 4 \\ min(2, 3) = 2 \\ min(2, 4) = 2 \\ min(4, 3) = 3 \\ min(2, 4) = 2 \end{array}$	4 3 4 3	M1 A1	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1)	
6	(i)	2	0 1 0 1 2	0 0 1 0 1 0 1 0	$\begin{array}{c} 4 \\ 3 \\ min(6, 4) = 4 \\ min(2, 3) = 2 \\ min(2, 4) = 2 \\ min(4, 3) = 3 \\ min(2, 4) = 2 \\ min(3, 3) = 3 \end{array}$	4 3 4 3 3	M1 A1 M1	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2)	
6	(i)	1	0 1 0 1	0 0 1 0 1 0 1 0 1 0	$\begin{array}{c} 4\\ 3\\ min(6, 4) = 4\\ min(2, 3) = 2\\ min(2, 4) = 2\\ min(4, 3) = 3\\ min(2, 4) = 2\\ min(3, 3) = 3\\ min(5, 4) = 4\\ \end{array}$	4 3 4 3	M1 A1	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1)	
6	(i)	2	0 1 0 1 2	0 0 1 0 1 0 1 0 1 0	$\begin{array}{c} 4\\ 3\\ min(6, 4) = 4\\ min(2, 3) = 2\\ min(2, 4) = 2\\ min(4, 3) = 3\\ min(2, 4) = 2\\ min(3, 3) = 3\\ min(5, 4) = 4\\ min(5, 3) = 3\\ \end{array}$	4 3 4 3 3	M1 A1 M1 A1	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2)	
6	(i)	2	0 1 0 1 2	0 0 1 0 1 0 1 0 1 0	$\begin{array}{c} 4\\ 3\\ min(6, 4) = 4\\ min(2, 3) = 2\\ min(2, 4) = 2\\ min(4, 3) = 3\\ min(2, 4) = 2\\ min(3, 3) = 3\\ min(5, 4) = 4\\ \end{array}$	4 3 4 3 3	M1 A1 M1 A1 B1 ft	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2) Transferring maximin values from stage 2	
6	(i)	2	0 1 0 1 2	0 0 1 0 1 0 1 0 1 0	$\begin{array}{c} 4\\ 3\\ min(6, 4) = 4\\ min(2, 3) = 2\\ min(2, 4) = 2\\ min(4, 3) = 3\\ min(2, 4) = 2\\ min(3, 3) = 3\\ min(5, 4) = 4\\ min(5, 3) = 3\\ \end{array}$	4 3 4 3 3	M1 A1 M1 A1 B1 ft M1 ft	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2) Transferring maximin values from stage 2 Completing working column for stage 3	
6	(i)	2	0 1 0 1 2	0 0 1 0 1 0 1 0 1 0	$\begin{array}{c} 4\\ 3\\ min(6, 4) = 4\\ min(2, 3) = 2\\ min(2, 4) = 2\\ min(4, 3) = 3\\ min(2, 4) = 2\\ min(3, 3) = 3\\ min(5, 4) = 4\\ min(5, 3) = 3\\ \end{array}$	4 3 4 3 3	M1 A1 M1 A1 B1 ft	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2) Transferring maximin values from stage 2	[8]
6		1 2 3	0 1 0 1 2	0 0 1 0 1 0 1 0 1 0	$\begin{array}{c} 4\\ 3\\ min(6, 4) = 4\\ min(2, 3) = 2\\ min(2, 4) = 2\\ min(4, 3) = 3\\ min(2, 4) = 2\\ min(3, 3) = 3\\ min(5, 4) = 4\\ min(5, 3) = 3\\ \end{array}$	4 3 4 3 3	M1 A1 M1 A1 B1 ft M1 ft A1 ft	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2) Transferring maximin values from stage 2 Completing working column for stage 3 Maximin value correct for stage 3	
6	(i) (ii)	2	0 1 0 1 2	0 0 1 0 1 0 1 0 1 0	$\begin{array}{c} 4\\ 3\\ min(6, 4) = 4\\ min(2, 3) = 2\\ min(2, 4) = 2\\ min(4, 3) = 3\\ min(2, 4) = 2\\ min(3, 3) = 3\\ min(5, 4) = 4\\ min(5, 3) = 3\\ \end{array}$	4 3 4 3 3	M1 A1 M1 A1 B1 ft M1 ft A1 ft B1 ft	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2) Transferring maximin values from stage 2 Completing working column for stage 3 Maximin value correct for stage 3 4, or ft their table if possible	
6		1 2 3 4	0 1 0 1 2 0	0 0 1 0 1 0 1 0 1 2	$\begin{array}{c} 4\\ 3\\ \min(6, 4) = 4\\ \min(2, 3) = 2\\ \min(2, 4) = 2\\ \min(4, 3) = 3\\ \min(2, 4) = 2\\ \min(3, 3) = 3\\ \min(5, 4) = 4\\ \min(5, 3) = 3\\ \min(2, 3) = 2\\ \end{array}$	4 3 4 3 3 4	M1 A1 M1 A1 B1 ft M1 ft A1 ft B1 ft M1 ft	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2) Transferring maximin values from stage 2 Completing working column for stage 3 Maximin value correct for stage 3 4, or ft their table if possible (3;0) – (2;0), or ft their table if possible	
6		1 2 3 4	0 1 0 1 2 0	0 0 1 0 1 0 1 0 1 2	$\begin{array}{c} 4\\ 3\\ min(6, 4) = 4\\ min(2, 3) = 2\\ min(2, 4) = 2\\ min(4, 3) = 3\\ min(2, 4) = 2\\ min(3, 3) = 3\\ min(5, 4) = 4\\ min(5, 3) = 3\\ \end{array}$	4 3 4 3 3 4	M1 A1 M1 A1 B1 ft M1 ft A1 ft B1 ft M1 ft M1 ft	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2) Transferring maximin values from stage 2 Completing working column for stage 3 Maximin value correct for stage 3 4, or ft their table if possible (3;0) – (2;0), or ft their table if possible (2;0) – (1;0), or ft their table if possible	[8]
6		1 2 3 4	0 1 0 1 2 0	0 0 1 0 1 0 1 0 1 2	$\begin{array}{c} 4\\ 3\\ \min(6, 4) = 4\\ \min(2, 3) = 2\\ \min(2, 4) = 2\\ \min(4, 3) = 3\\ \min(2, 4) = 2\\ \min(3, 3) = 3\\ \min(5, 4) = 4\\ \min(5, 3) = 3\\ \min(2, 3) = 2\\ \end{array}$	4 3 4 3 3 4	M1 A1 M1 A1 B1 ft M1 ft A1 ft B1 ft M1 ft	Maximin value correct for (2;0) Completing working column of (2;1) Maximin value correct for (2;1) Completing working column for (2;2) Maximin value correct for (2;2) Transferring maximin values from stage 2 Completing working column for stage 3 Maximin value correct for stage 3 4, or ft their table if possible (3;0) – (2;0), or ft their table if possible	[8]

7	(i)	$ \begin{array}{c} A \\ B \\ C \\ D \\ \end{array} \\ H \\ S \\ \end{array} $	B1	Correct bipartite graph seen Ignore further working on graph for incomplete matching or alternating path	
		Alternating path: $D - H - C - S - B - M$ - $A - P$	B1	This, or in reverse, listed (not just deduced from labelling of diagram)	
		Matching: A - P B - M C - S D - H	B1	This matching	[3]
	(ii)	$\begin{array}{c} 13 14\\ \hline 12 12\\ A(10)\\ \hline E(2)\\ \hline 10 10\\ \hline G(3)\\ \hline 13 14\\ \hline \end{array} \\ \begin{array}{c} F(4)\\ \hline D(2)\\ \hline H(2)\\ \hline H(2)\\ \hline \end{array} \\ \begin{array}{c} F(4)\\ \hline D(2)\\ \hline H(2)\\ \hline \end{array} \\ \begin{array}{c} F(4)\\ \hline D(2)\\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} F(4)\\ \hline \end{array} \\ \begin{array}{c} F(2)\\ \hline \end{array} \\ \begin{array}{c} F(3)\\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} F(3)\\ \hline \end{array} \\ \end{array} \\ \end{array} $	M1 A1 M1 A1 ft M1 A1 ft	Precedences correct A correct network (directions may be implied) Forwards pass Early event times correct (need not use boxes) Backwards pass Late event times (need not use boxes)	[6]
	(iii)	Completion time: 16 hours Critical activities: <i>A B F</i>	B1 B1	16 with units Correct list	[2]
	(iv)	G G G E 0 2 4 6 8 10 12 14 16 time hours) (mins)	M1 A1 ft A1 ft	Accept any variation of cascade chart Structure of chart correct, activities may be collected together or on individual rows Non-critical activities correct, none split across rows (floats not necessary) Critical activities correct	[3]
]		Total =	14

Advanced GCE Mathematics (3892 – 2, 7890 - 2) January 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	e	u
4721	Raw	72	63	55	48	41	34	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	57	49	41	33	26	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	48	41	34	28	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	57	49	41	33	26	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	58	50	42	34	26	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	54	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	61	53	45	38	31	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	61	53	45	37	29	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	54	47	40	33	26	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	59	52	45	38	32	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	61	54	47	40	33	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	53	45	38	31	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	E	U
3890/3892	300	240	210	180	150	120	0
7897892	600	480	420	360	300	240	0

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	19.1	36.8	59.5	80.6	94.3	100	299
3892	66.7	77.8	88.9	88.9	100	100	9
7890	40.2	62.5	87.5	95.5	100	100	112
7892	50.0	83.3	83.3	83.3	91.7	100	12

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam_system/understand_ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2007

