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1 The matrices A and B are given by A = (4 1
0 2

) and B = ( 1 1
0 −1

).
(i) Find A + 3B. [2]

(ii) Show that A − B = kI, where I is the identity matrix and k is a constant whose value should be
stated. [2]

2 The transformation S is a shear parallel to the x-axis in which the image of the point (1, 1) is the
point (0, 1).

(i) Draw a diagram showing the image of the unit square under S. [2]

(ii) Write down the matrix that represents S. [2]

3 One root of the quadratic equation x2 + px + q = 0, where p and q are real, is the complex number
2 − 3i.

(i) Write down the other root. [1]

(ii) Find the values of p and q. [4]

4 Use the standard results for
n

∑
r=1

r3 and
n

∑
r=1

r2 to show that, for all positive integers n,

n

∑
r=1

(r3 + r2) = 1
12

n(n + 1)(n + 2)(3n + 1). [5]

5 The complex numbers 3 − 2i and 2 + i are denoted by � and w respectively. Find, giving your answers
in the form x + iy and showing clearly how you obtain these answers,

(i) 2� − 3w, [2]

(ii) (i�)2, [3]

(iii)
�
w

. [3]

6 In an Argand diagram the loci C1 and C2 are given by

|�| = 2 and arg � = 1
3
π

respectively.

(i) Sketch, on a single Argand diagram, the loci C1 and C2. [5]

(ii) Hence find, in the form x + iy, the complex number representing the point of intersection of
C1 and C2. [2]
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7 The matrix A is given by A = ( 2 0
0 1

).
(i) Find A2 and A3. [3]

(ii) Hence suggest a suitable form for the matrix An. [1]

(iii) Use induction to prove that your answer to part (ii) is correct. [4]

8 The matrix M is given by M = (a 4 2
1 a 0
1 2 1

).

(i) Find, in terms of a, the determinant of M. [3]

(ii) Hence find the values of a for which M is singular. [3]

(iii) State, giving a brief reason in each case, whether the simultaneous equations

ax + 4y + 2� = 3a,

x + ay = 1,

x + 2y + � = 3,

have any solutions when

(a) a = 3,

(b) a = 2.
[4]

9 (i) Use the method of differences to show that

n

∑
r=1

{(r + 1)3 − r3} = (n + 1)3 − 1. [2]

(ii) Show that (r + 1)3 − r3 ≡ 3r2 + 3r + 1. [2]

(iii) Use the results in parts (i) and (ii) and the standard result for
n

∑
r=1

r to show that

3
n

∑
r=1

r2 = 1
2
n(n + 1)(2n + 1). [6]

10 The cubic equation x3 − 2x2 + 3x + 4 = 0 has roots α, β and γ .

(i) Write down the values of α + β + γ , αβ + βγ + γ α and αβγ . [3]

The cubic equation x3 + px2 + 10x + q = 0, where p and q are constants, has roots α + 1, β + 1 and
γ + 1.

(ii) Find the value of p. [3]

(iii) Find the value of q. [5]
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