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1 Simplify
x3 − 3x2

x2 − 9
. [3]

2 Given that sin y = xy + x2, find
dy
dx

in terms of x and y. [5]

3 (i) Find the quotient and the remainder when 3x3 − 2x2 + x + 7 is divided by x2 − 2x + 5. [4]

(ii) Hence, or otherwise, determine the values of the constants a and b such that, when
3x3 − 2x2 + ax + b is divided by x2 − 2x + 5, there is no remainder. [2]

4 (i) Use integration by parts to find � x sec2 x dx. [4]

(ii) Hence find � x tan2 x dx. [3]

5 A curve is given parametrically by the equations x = t2, y = 2t.

(i) Find
dy
dx

in terms of t, giving your answer in its simplest form. [2]

(ii) Show that the equation of the tangent to the curve at (p2, 2p) is

py = x + p2. [2]
(iii) Find the coordinates of the point where the tangent at (9, 6) meets the tangent at (25, −10). [4]

6 (i) Show that the substitution x = sin2 θ transforms �
√

x
1 − x

dx to � 2 sin2 θ dθ . [4]

(ii) Hence find � 1

0

√
x

1 − x
dx. [5]

7 The expression
11 + 8x(2 − x)(1 + x)2

is denoted by f(x).

(i) Express f(x) in the form
A

2 − x
+ B

1 + x
+ C(1 + x)2

, where A, B and C are constants. [5]

(ii) Given that |x| < 1, find the first 3 terms in the expansion of f(x) in ascending powers of x. [5]
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8 (i) Solve the differential equation

dy
dx

= 2 − x
y − 3

,

giving the particular solution that satisfies the condition y = 4 when x = 5. [5]

(ii) Show that this particular solution can be expressed in the form

(x − a)2 + (y − b)2 = k,

where the values of the constants a, b and k are to be stated. [3]

(iii) Hence sketch the graph of the particular solution, indicating clearly its main features. [3]

9 Two lines have vector equations

r = ( 4
2−6
) + t(−8

1−2
) and r = (−2

a−2
) + s(−9

2−5
) ,

where a is a constant.

(i) Calculate the acute angle between the lines. [5]

(ii) Given that these two lines intersect, find a and the point of intersection. [8]
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