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Show that J‘ —dx =1n64. [4]
, X
Solve, for 0° < 6 < 360°, the equation sec’ 8 = 4 tan 6 — 2. [5]
(a) Differentiate X2 (x+ 1)6 with respect to x. [3]
X +3
(b) Find the gradient of the curve y = T3 at the point where x = 1. [3]
x —

The function f is defined by f(x) = 2 — v/x for x > 0. The graph of y = f(x) is shown above.

(i) State the range of f. [1]
(ii) Find the value of ff(4). [2]
(iii) Given that the equation |f(x)| = k has two distinct roots, determine the possible values of the
constant k. [2]
y
A
y=(-2)
0 » X
—Ty= e2‘c—l -1

2x

The diagram shows the curves y = (1 — 2)c)5 andy=e ~1'_ 1. The curves meet at the point (%, 0).

Find the exact area of the region (shaded in the diagram) bounded by the y-axis and by part of each
curve. [8]
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(a)

t

0

10

20

X

275

440

The quantity X is increasing exponentially with respect to time z. The table above shows values

of X for different values of ¢. Find the value of X when ¢ = 20.

(b) The quantity Y is decreasing exponentially with respect to time ¢ where

Y = 80e 0%

[3]

(i) Find the value of ¢ for which Y = 20, giving your answer correct to 2 significant figures.

[3]

(ii) Find by differentiation the rate at which Y is decreasing when ¢ = 30, giving your answer

correct to 2 significant figures.

)

The diagram shows the curve with equation y = cos ! x.

(3]

(i) Sketch the curve with equation y = 3 cos™ ! (x — 1), showing the coordinates of the points where

the curve meets the axes.

(3]

(ii) By drawing an appropriate straight line on your sketch in part (i), show that the equation

3cos™ ' (x — 1) = x has exactly one root.

[1]

(iii) Show by calculation that the root of the equation 3 cos”! (x—1) =xliesbetween 1.8 and 1.9. [2]

(iv) The sequence defined by

X 1:1+cos(

n+

3

lxn)

converges to a number . Find the value of o correct to 2 decimal places and explain why o is
the root of the equation 3cos™ (x — 1) = x.

[Questions 8 and 9 are printed overleaf.]
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The diagram shows part of the curve y = In(5 — x?) which meets the x-axis at the point P with
coordinates (2, 0). The tangent to the curve at P meets the y-axis at the point Q. The region A is
bounded by the curve and the lines x = 0 and y = 0. The region B is bounded by the curve and the
lines PQ and x = 0.

(i) Find the equation of the tangent to the curve at P. [5]

(ii) Use Simpson’s Rule with four strips to find an approximation to the area of the region A, giving
your answer correct to 3 significant figures. [4]

(iii) Deduce an approximation to the area of the region B. [2]

(i) By first writing sin 36 as sin(26 + 6), show that

sin36 = 3sin 6 — 4sin’ 6. [4]

(ii) Determine the greatest possible value of
. (10 - 3010
95111(?&) —12sin (?OC),

and find the smallest positive value of o (in degrees) for which that greatest value occurs.  [3]

(>iii) Solve, for 0° < < 90°, the equation 3 sin 63 cosec 23 = 4. [6]
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